On some relations between the Martin boundary and the Feller boundary

By Hisao WATANABE

(Received Nov. 9, 1960) (Revised Jan. 10, 1961)

- 1. In this paper we shall consider the integral representation of bounded harmonic functions by means of a regular Borel measure on the Feller boundary $\mathcal{M}(\mathfrak{S})$ (cf. Section 9). For this purpose we investigate mutual relations between the family of bounded harmonic functions, a function lattice on the Martin boundary and a function lattice on the Feller boundary, by use of the Martin representation theorem of harmonic functions (cf. J. L. Doob [3] and T. Watanabe [12], [13]). This subject is closely related to some results of D.G. Kendall [9] which we shall prove here by a different method.
- **2.** Let X be a countable state space with the discrete topology. Let $X \cup \{\rho\}$ be denoted by \widetilde{X} in which $\{\rho\}$ is added to X as an isolated point. Let W be the totality of \widetilde{X} -valued right-continuous functions w on the interval $T = [0, \infty]$. The value of w at time t is denoted by w(t) or $x_t(w)$. Let $\mathbf{M} = \{X, W, P_x, x \in \widetilde{X}\}$ be a minimal Markov process¹⁾ where X is the state space, W is the sample space and P_x is the probability measure on the Borel field $\mathfrak{F}(W)$ generated by the sets $\{w; x_t(w) \in A\}(A: a \text{ Borel set on } \widetilde{X})$. Define

$$\sigma_A(w) = \inf \{t > 0 \; ; \; x_t(w) \in A \}$$
 if $x_t(w) \in A$ for some $t > 0$,
$$= +\infty$$
 otherwise,
$$\tau_A(w) = \inf \{t > 0 \; ; \; x_t(w) \notin A \}$$
 if $x_t(w) \notin A$ for some $t > 0$,
$$= +\infty$$
 otherwise.

For $x,y\in \widetilde{X}$, we set $\Pi(x,y)=P_x\{w\;;\;x_{\tau_x}(w)=y,\;\tau_x<+\infty\}$. Then $\Pi(x,\rho)=1-\sum_{y\in X}\Pi(x,y)$ and $\Pi(\rho,\rho)=1$.

In this paper, a finite real valued function $u(\cdot)$ over X will be called x_t -harmonic if it satisfies $u(x) = \sum_{y \in X} \Pi(x,y) u(y)$ (in the sense of absolute convergence) for any x in X.

¹⁾ The term 'minimal process' is used in the sense of W. Feller [6, pp. 535-537]. Also a precise definition of such process is seen in [13, Chapter 1].

²⁾ We denote τ_x in case $A = \{x\}$.