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1. In this paper we shall consider the integral representation of bounded
harmonic functions by means of a regular Borel measure on the Feller boundary
$\ovalbox{\tt\small REJECT}(\mathfrak{S})$ (cf. Section 9). For this purpose we investigate mutual relations between
the family of bounded harmonic functions, a function lattice on the Martin
boundary and a function lattice on the Feller boundary, by use of the Martin
representation theorem of harmonic functions (cf. J. L. Doob [3] and T. Wata-
nabe [12], [13]). This subject is closely related to some results of D. G.
Kendall [9] which we shall prove here by a different method.

2. Let $X$ be a countable state space with the discrete topology. Let
$XU\{\rho\}$ be denoted by $\tilde{X}$ in which $\{\rho\}$ is added to $X$ as an isolated point.
Let $W$ be the totality of $\tilde{X}$-valued right-continuous functions $w$ on the inter-
val $T=[0, \infty]$ . The value of $w$ at time $t$ is denoted by $w(t)$ or $x_{c}(u’)$ . Let $M$

$=\{X, W, P_{x}, x\in\tilde{X}\}$ be a minimal Markov process1) where $X$ is the state space,
$W$ is the sample space and $P_{x}$ is the probability measure on the Borel field
$\mathscr{Z}(W)$ generated by the sets $\{w;x_{t}(w)\in A\}$ ($A$ : a Borel set on $\tilde{X}$). Define

$\sigma_{A}(w)=\inf\{t>0;x_{t}(w)\in A\}$ if $x_{t}(w)\in A$ for some $t>0$ ,

$=+\infty$ otherwise,

$\tau_{A}(w)=\inf\{t>0;x_{t}(w)\in EA\}$ if $x_{L}(w)\not\in A$ for some $t>0$ ,

$=+\infty$ otherwise.2)

For $x,y\in\tilde{X}$, we set $\Pi(x, y)=P_{x}\{w;x_{r_{x}}(w)=y, \tau_{x}<+\infty\}$ . Then $\Pi(x, \rho)=1-$

$\sum_{y\in X}\Pi(x, y)$ and $\Pi(\rho, \rho)=1$ .
In this paper, a finite real valued function $u(\cdot)$ over $X$ will be called $x_{t^{-}}$

harmonic if it satisfies $u(x)=\sum_{y\in X}\Pi(x, y)u(y)$ (in the sense of absolute conver-

gence) for any $x$ in $X$.

1) The term ‘ minimal process’ is $\dot{u}$ scd in thesense of W. Fellcr [6, pp. 535-537].
Also a precise definition of such process is seen in [13, Chapter 1].

2) We denote $\tau_{x}$ in case $A=\{x\}$ .


