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\S 1. Introduction. Witt has proved that the classes of ’ \"ahnlich’ forms
over a field $k$ , which has characteristic not 2, form a ring (Witt [2]). This
ring will be called Witt ring over $k$ , in this paper. We shall consider the
structure of Witt ring. Our results will be shown in theorem 1 for a
finite field, in theorem 2 for a complete field with respect to a discrete
non-Archimedean valuation, whose residue class field is finite and of char-
acteristic not equal to 2, where Witt ring over that field is related to Witt
ring over the residue class field, and in theorem 3 for an algebraic number
field of finite degree over the rational number field.

I am quite indebted to Mr. A. Hattori, who has given kind help through-
out.

\S 2. Preliminaries. In the first place, Eichler’s formulation of Witt
group in terms of metric spaces will be shown as follows (Eichler [1]):

Let $k$ be a fixed commutative field of characteristic not 2, then a vector
space $R$ over $k$ is made into a metric space by defining the (inner) producf
$\xi\eta$ of two vectors $\xi,$

$\eta$ , such that $\xi\eta$ is in $k$ and

1. $\xi\eta=\eta\xi$ ,
2. $(\xi+\eta)\zeta=\xi\zeta+\eta\zeta$ ,
3. $(x\xi)\eta=x(\xi\eta),$ $x\in k$ .
We consider only finite dimensional metric spaces over $k$ . If $\{f_{1}\cdots , f_{n}\}$

is a basis of $R$ over $k$ (in this case we write $R=k$ ( $\ell_{1},$
$\cdots$ , $f_{n}$)), the square $\xi^{2}$

of $\xi=\sum_{i=1}^{n}X_{i}C_{i},$ $X_{i}\in k$ , is a quadratic form

$f=\sum_{i.j=1}^{n}f_{ij}x_{i}x_{j}$ , $(f_{ij}=f_{ji}\in k)$

in $x_{i}$ , where $f_{ij}=\ell_{i}\ell_{j}$ . $f$ is called a fundamental form of $R$, and we denote
this by $f\cdots R$. Conversely, every quadratic form $f$ over $h$ is a fundamental
form of some space $R$.

Spaces $R$ are always assumed to be semi-simple, namely for every vector
$\xi\neq 0$ in $R$ there is a vector $\eta$ such that $\xi\eta\neq 0$ , in other words, $iff\cdots R$, the
determinant $|f_{ij}|$ of the matrix $(f_{ij})$ of coefficients of $f$ is not zero.


