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1. Let us denote by $C$ a closed Jordan curve on w-plane, contained in
$ 1-\epsilon\leqq|w|\leqq 1+\epsilon$ for $0<\epsilon<1$ and surrounding the origin, and denote by $D$

the interior of $C$. When $\epsilon$ is sufficiently small, $D$ is a so-called nearly
circular domain. Let $w=F(z)$ be the function mapping the interior of the
unit circle $|z|<1$ conformally onto $D$ such that $F(O)=0,$ $F^{\prime}(O)>0$ . The
estimates of various quantities related to $D$ or $F(z)$ in terms of $\epsilon$ have been
given by various authors, recently by S. E. Warschawski [8], E. Specht [5],

and Z. Nehari and V. Singh [4]. In [8] and [5], $ d\arg F(e^{t\theta})/d\theta$ is estimated
under some additional conditions for $C$. We treat, in this paper, the similar
problems under somewhat different conditions, where $C$ is not necessarily
starlike with respect to the origin and there may be several angular points
on it. Further we derive the inequalities concerning $|F^{\prime}(e^{i\theta})|,$ $\arg F(e^{t\theta})-\theta$ ,
etc. We consider next about the expansion of $F(z)$ by $\epsilon$ . The results
obtained there are possibly helpful to the numerical computation of $F(z)$ .

2. We begin with several lemmas.
LEMMA 1. Let $\Delta$ be the sum of two open circular discs $|w|<1$ and $|w-a|$

$<r$ , where $0<r\leqq 1$ and $1-\gamma<a<1+r$, and $e^{ia},$ $e^{-i\alpha}(0<\alpha<\pi/2)$ the inter-
sections of those circumferences. Further we denote by $w=f(z)$ the function
mapping $|z|<1$ conformally onto $\Delta$ such that $f(O)=0,$ $f^{\prime}(O)>0$ , and put $f(e^{t\beta})=$

$e^{ia},$ $f(e^{-i\beta})=e^{-ia}$ . Then $ d\arg f(e^{i\theta})/d\theta$ for $-\beta<\theta<\beta$ attains its maximum at
$\theta=0$.

PROOF. The function $w=f(z)$ is represented explicitly by the composition
of the functions

(1) $z=\frac{1+i\zeta\tan\beta/}{1-i\zeta\tan\beta/}22$ ,

\langle 2) $w=\frac{\cos\frac{\alpha-\delta}{2}}{\cos\frac{\alpha+\delta}{2}}\frac{1+i\omega\tan\frac{\alpha-\delta}{}}{1-i\omega\tan\frac{\alpha+\delta 2}{2}}$

and

(3) $\frac{1+\omega}{1-\omega}=(\frac{1+\zeta}{1-\zeta})^{1+\delta/\pi}$


