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In a former paper [6], the author developed a theory of ordinal numbers
independently of the set theory and then constructed the set theory in the
theory of ordinal numbers.

In that theory, we used only the predicates $<,$ $=$ and only the functions
$N,$ $\max$ , Iq, $j,$ ${\rm Min}$ , Rec, and $\chi$ . (We used other special variables and func-
tions $0,$ $\omega,$

$\delta$ , represented by the above described $f\dot{u}nctions.$ )

In this paper, we shall call a function semi-recursive if it is represented
by $N,$ $\max$ , Iq, $j,$ ${\rm Min}$ and Rec, and a semi-recursive function recursive, if
every ${\rm Min}$ in the function satisfies the well-known condition as in the case
of the recursive functions of natural numbers (to be given precisely later).

We shall define, moreover, $M_{a}$ as the model generated by $N,$ $\max$ , Iq, $j,$ ${\rm Min}$,
Rec and the ordinals less than $a$ . $M_{a}$ is well-ordered by the original order
and has the same order type as the ordinal $\mathfrak{m}(a)$ . Then we shall prove that
an interpretation of a recursive function $f$ in the model of ordinals less
than $\mathfrak{m}(a)$ is $f$ itself and that the power of $f(a_{1}, \cdots , a_{n})$ is not greater than
the power of $\max(a_{1}, a_{n})$ , if $f$ is recursive and $\max(a_{1}, a_{n})\geqq\omega$ . It
seems very difficult to generalize this proposition to the case of semi-
recursive functions, because the consistency of the set theory could be
proved, if it is proved.

On the formalized system developed in [6], we shall prove that there
exists a recursive function $C$ such that we can replace the axiom of cardinal
by the weaker axiom $\forall x\exists y\forall z(C(x, y, z)=0\wedge y>0)$ to construct the set theory.
We shall give further the condition for the ordinal $a$ with countable power
that the ordinals less than $a$ constitute the model of the set theory.
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