Some remarks on Einstein spaces and spaces of constant curvature.

Dedicated to Professor Z. Suetuna on his 60th birthday.

By Kentaro Yano and Tsunero Takahashi

(Received July 31, 1959)

§ 1. Preliminaries.

The object of the present paper is to generalise some of recent results of André Avez [1]* to the case of non-compact Einstein spaces and to the case of spaces of constant curvature.

We shall here give notations and the formulas which will be used in the sequel.

Let M be an n dimensional Riemannian space of class C^{4} with the fundamental metric tensor $g_{\mu \lambda}$ whose signature is not necessarily positive definite. We denote by ∇_{μ} the covariant differentiation with respect to the Christoffel symbols $\left\{{ }_{\mu}{ }_{\lambda}{ }_{\lambda}\right\}$, by $K_{\nu \mu \lambda \kappa}$ the curvature tensor, by $K_{\mu \lambda}$ the Ricci tensor and by K the curvature scalar.

For an arbitrary skew-symmetric tensor field $w: w_{1_{1} \lambda_{2} \cdots \lambda_{p}}$ of order p, we write

$$
\begin{equation*}
(d w)_{\mu \lambda_{1} \lambda_{2} \cdots \lambda_{p}}=(p+1) \Gamma_{[\mu} w_{\left.\lambda_{1} \lambda_{2} \ldots \lambda_{p]}\right]} \tag{1.1}
\end{equation*}
$$

and

$$
\begin{equation*}
(\delta w)_{\lambda_{s} \cdots \cdots \lambda_{p}}=\nabla_{\mu} w^{\mu}{ }_{\lambda_{2} \lambda_{\cdots} \cdots \lambda_{p}} . \tag{1.2}
\end{equation*}
$$

Then the de Rham operator $\Delta=d \delta+\delta d$ applied to w gives [2]

$$
\begin{aligned}
(\Delta w) \lambda_{\lambda_{1} \lambda_{2} \cdots \cdots \lambda_{p}}= & g^{\nu \mu} \nabla_{\nu} \nabla_{\mu} w_{\lambda_{2} \lambda_{\cdots} \cdots \lambda_{p}} \\
& -p K_{\left[\lambda_{2}\right.}{ }^{\mu} w_{\left.|\mu| \lambda_{2} \cdots \cdots \lambda_{p}\right]}-\frac{p(p-1)}{2} K_{\left[\lambda_{1} \lambda_{2} \mu_{2} \mu\right.}^{\nu w_{\left.|\nu \mu| \lambda_{2} \cdots \cdots \lambda_{p}\right]}} ⿵
\end{aligned}
$$

Especially, if w is a vector field,
(1.3)

$$
\begin{equation*}
(\Delta w)_{\lambda}=g^{\nu \mu} \nabla_{\nu} \nabla_{\mu} w_{\lambda}-K_{\lambda}{ }^{\kappa} w_{\kappa} \tag{1.3}
\end{equation*}
$$

and if w is a skew-symmetric tensor field of order two,

$$
(\Delta w)_{\lambda \kappa}=g^{\nu \mu} \nabla_{\nu} \nabla_{\mu} w_{\lambda \kappa}-2 K_{[\lambda}{ }^{\mu} w_{|\mu| \kappa]}-K_{\lambda \kappa}{ }^{\nu \mu} w_{\nu \mu}
$$

or

$$
\begin{equation*}
(\Delta w)_{\lambda \kappa}=g^{\nu \mu} \nabla_{\nu} \nabla_{\mu} w_{\lambda \kappa}-\left(2 K_{[\lambda}{ }^{[\nu} A_{\kappa]}^{\mu}+K_{\lambda \kappa}{ }^{\nu \mu}\right) w_{\nu \mu} . \tag{1.4}
\end{equation*}
$$

[^0]
[^0]: * See the Bibliography at the end of the paper.

