Journal of the Mathematical Society of Japan

Some remarks on Einstein spaces and spaces of constant curvature.

Dedicated to Professor Z. Suetuna on his 60th birthday.

By Kentaro YANO and Tsunero TAKAHASHI

(Received July 31, 1959)

§1. Preliminaries.

The object of the present paper is to generalise some of recent results of André Avez [1]* to the case of non-compact Einstein spaces and to the case of spaces of constant curvature.

We shall here give notations and the formulas which will be used in the sequel.

Let *M* be an *n* dimensional Riemannian space of class C⁴ with the fundamental metric tensor $g_{\mu\lambda}$ whose signature is not necessarily positive definite. We denote by \mathcal{V}_{μ} the covariant differentiation with respect to the Christoffel symbols $\{\mu_{\lambda}^{\kappa}\}$, by $K_{\nu\mu\lambda\kappa}$ the curvature tensor, by $K_{\mu\lambda}$ the Ricci tensor and by *K* the curvature scalar.

For an arbitrary skew-symmetric tensor field $w: w_{\lambda_1 \lambda_2 \cdots \lambda_p}$ of order p, we write

(1.1)
$$(dw)_{\mu\lambda_1\lambda_2\cdots\lambda_p} = (p+1)\mathcal{V}_{[\mu}w_{\lambda_1\lambda_3\cdots\lambda_p]}$$

and

(1.2) $(\delta w)_{\lambda_1 \lambda_2 \cdots \lambda_p} = \nabla_{\mu} w^{\mu}{}_{\lambda_2 \lambda_3 \cdots \lambda_p} \,.$

Then the de Rham operator $\Delta = d\delta + \delta d$ applied to w gives [2]

$$(\Delta w)_{\lambda_1 \lambda_2 \cdots \lambda_p} = g^{\nu \mu} \nabla_{\nu} \nabla_{\mu} w_{\lambda_1 \lambda_2 \cdots \lambda_p} -p K_{[\lambda_1}{}^{\mu} w_{[\mu] \lambda_2 \cdots \lambda_p]} - \frac{p(p-1)}{2} K_{[\lambda_1 \lambda_2}{}^{\nu \mu} w_{[\nu \mu] \lambda_2 \cdots \lambda_p]}.$$

Especially, if w is a vector field,

(1.3)
$$(\Delta w)_{\lambda} = g^{\nu \mu} \nabla_{\nu} \nabla_{\mu} w_{\lambda} - K_{\lambda}^{\kappa} w_{\kappa}$$

and if w is a skew-symmetric tensor field of order two,

$$(\varDelta w)_{\lambda\kappa} = g^{\nu\mu} \nabla_{\!\!\nu} \nabla_{\!\!\mu} w_{\lambda\kappa} - 2K_{[\lambda}{}^{\mu} w_{[\mu]\kappa]} - K_{\lambda\kappa}{}^{\nu\mu} w_{\nu\mu}$$

or

(1.4)
$$(\varDelta w)_{\lambda\kappa} = g^{\nu\mu} \nabla_{\nu} \nabla_{\mu} w_{\lambda\kappa} - (2K_{[\lambda}{}^{[\nu}A^{\mu]}_{\kappa]} + K_{\lambda\kappa}{}^{\nu\mu}) w_{\nu\mu} .$$

^{*} See the Bibliography at the end of the paper.