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\S 1. Preliminaries.

The object of the present paper is to generalise some of recent results
of Andr\’e Avez $[1]^{*}$ to the case of non-compact Einstein spaces and to the
case of spaces of constant curvature.

We shall here give notations and the formulas which will be used in
the sequel.

Let $M$ be an $n$ dimensional Riemannian space of class $C^{4}$ with the
fundamental metric tensor $ g_{l^{l}}\lambda$ whose signature is not necessarily positive
definite. We denote by $\nabla_{\mu}$ the covariant differentiation with respect to the
Christoffel symbols {,,$\kappa_{\lambda\}}$ by $K_{\nu\mu\lambda\kappa}$ the curvature tensor, by $K_{\mu\lambda}$ the Ricci
tensor and by $K$ the curvature scalar.

For an arbitrary skew-symmetric tensor field $w:w_{\lambda_{1}\lambda_{2}\cdots\lambda_{p}}$ of order $p$, we
write
(1.1) $(dw)_{\rho\rho\lambda_{1}\lambda_{2}\cdots\lambda p}=(p+1)\nabla_{I\mu}w_{\lambda_{1}\lambda\cdots\cdot\lambda_{p}1}$

and
\langle 1.2) $(\delta w)_{\lambda\lambda_{S}\cdots\lambda p}=\nabla_{\mu}w_{\lambda_{2}\lambda_{8}\cdots\lambda p}^{\mu}$ .

Then the de Rham operator $\Delta=d\delta+\delta d$ applied to $w$ gives [2]

$(\Delta w)_{\lambda_{1}\lambda_{2}\cdots\lambda p}=g^{\nu\mu}\nabla_{\nu}\nabla_{\mu}w_{\lambda_{1}\lambda\cdots\lambda p}$

$-pw_{|_{1^{I}}|\lambda_{2}\cdots\lambda_{p}3}.$ .

Especially, if $w$ is a vector field,

(1.3) $(\Delta w)_{\lambda}=g^{\nu\mu}\nabla_{\nu}\nabla_{\mu}w_{\lambda}-K_{\lambda^{\kappa}}w_{\kappa}$

and if $w$ is a skew-symmetric tensor field of order two,

$(\Delta w)_{\lambda\kappa}\}\mu|K\supset$

or
(1.4) $(\Delta w)_{\lambda\kappa}=g^{\nu\mu}\nabla_{\nu}\nabla_{\mu}w_{\lambda\kappa^{-}}-(2K_{\zeta\lambda}^{\subset\nu}A_{\kappa J}^{\mu 3}+K_{\lambda\kappa}^{\nu’ x})w_{\nu\mu}$ .

*See the Bibliography at the end of the paper.


