Journal of the Mathematical Society of Japan

Homogeneous hypersurfaces in euclidean spaces.

Dedicated to Professor Z. Suetuna on his 60th birthday.

By Tadashi NAGANO and Tsunero TAKAHASHI

(Received March 25, 1959)

S. Kobayashi [3] proved that a compact connected homogeneous Riemannian manifold M of dimension n is isometric to the sphere if it is isometrically imbedded in the euclidean space E of dimension n+1. In this paper we shall prove that a connected homogeneous Riemannian space M (compact or not) of dimension n is isometric to the Riemannian product of a sphere and a euclidean space if M is isometrically imbedded in the euclidean space E of dimension n+1 and the rank of the second fundamental form H is of rank $\neq 2$ at some point.

Manifolds and mappings between them will always be of differentiability class C^{∞} .

1. Preliminaries.

Let M be a connected Riemannian manifold. Assume that there exists an isometric map f of M into a euclidean space E, in which we fix a cartesian coordinate system. f is isometric in the sense that the dual map of the differential f' of f carries the Riemannian metric of E to that of M.

Assigning to a point p of M the A-th coordinate component of f(p), $1 \leq A \leq \dim E$, we obtain a function f^A on M. For any vector X tangent to M at x, we denote by Xf the vector tangent to E at f(x) whose A-th component is Xf^A and call Xf the covariant differentiation of f in X. We shall write X for V_X or $X''V_{\mu}$ in coordinates as long as no ambiguity might be feared. In the same way one can define the covariant differentiation Xf' of the differential f' of f and other objects such as a map of M into the tangent bundle of E or into the isometry group of E. It goes without saying that, when X has x as the origin, Xf' is a linear map of the tangent space M_x to M at x into the tangent space $E_{f(x)}$ for any x in M, and that Xf = f'X.

It is easy to see that (Xf')Y is normal to f(M) for any vectors X and Y at a point x. Thus (Xf')Y is a linear combination of the normal vectors

$$(Xf')Y = \sum_{1 \leq t \leq d} H_t \mathfrak{n}_t$$
,