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On conformal transformations of Riemannian spaces.
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Introduction. In this paper, we mean by a space always a connected
Riemannian space (with a positive definite metric) of class $C^{\infty}$ and of
dimension $n>3$ . We denote such a space generally with $M$, and the con-
formal transformation group of $M$ with $C(M)$ , the isometry group of $M$

with $I(M)$ . If ]$\psi^{\prime}$ is another space and $C(M)\subset I(l\psi^{\prime})$ , the study of $C(M)$ will
be reduced to that of $I(M^{\prime})$ . We shall say for brevity that $ j\psi$ is conformally
reducible if we can find an $M^{\prime}$ with $C(M)\subset I(M^{\prime})$ . Several authors have
shown that spaces satisfying some conditions on the Ricci tensor have the
property $C(M)\subset I(M)$ or $C^{0}(M)\subset I(j\psi)$ , where $C^{0}(M)$ means the identity
component of $C(M)$ (see [8]). In \S 1 of this paper, we shall show that
$C(M)\subset I(M^{\prime})$ holds for a submanifold $M^{\prime}$ of $M$ whenever $M$ is not conform-
ally flat. Thus, spaces which are not conformally flat, are conformally
reducible in the sense explained above. This is based on a theorem
(theorem H) essentially due to Hlavat\’y. From this remark follow very
easily the following known results for example:

I. If an n-dimensional Riemannian space $M(n>4)$ admits the group
$C(M)$ of conformal transformations with dimensions greater than $n(n-1)/2$

$+7$ , then $M$ is conformally flat (H. Hiramatu [1]).

II. Let $\rho$ be the natural representation on the tangent space $T_{p}$ of $M$

at a point $p\in M$ of the group $C_{p}(M)$ of isotropy of $C(M)$ at $p$ . If $\rho(C_{p}(M))$

is not contained in the rotation group of $T_{p}$ with the induced metric, the
conformal tensor vanishes at $p$ (S. Ishihara and M. Obata, see [8] p. 277).

As another application of theorem $H$ we shall prove that a Riemannian
homogeneous space which is not conformally flat does not admit a conformal
transformation but for an isometry.

In \S \S 2-4, we shall consider conformally flat spaces, to which the
“ method of reduction ” is not applicable. If we denote the n-Mobius group
(for definition see below) by $M(n)$ , the contents of \S 2 may be summarized
by the following three statements:

(1) We have always $C(M)\subset M(n)$ locally,
(2) $C(lV)=l\psi(n)$ locally if and only if $ j\psi$ is conformally equivalent with

$S^{n}$ ($S^{n}$ means the n-sphere, cf. [4]).

(3) If $C(M)$ is transitive, then there exists an open submanifold $1\psi^{\prime}$


