On the partitions of a number into the powers of prime numbers.

By Takayoshi Mitsui

(Received June 25, 1957)

1. In 1953, Szekeres [4] proved an asymptotic formula for the number $P(n, m)$ of the partitions of n into positive integers not exceeding m, for large n and m. The generating function of $P(n, m)$ is

$$
F(w)=\prod_{\nu=1}^{m}\left(1-w^{\nu}\right)^{-1}=\sum_{n=0}^{\infty} P(n, m) w^{n} \quad(|w|<1)
$$

and we have

$$
\begin{equation*}
P(n, m)=\frac{1}{2 \pi} e^{n \rho} \int_{-\pi}^{\pi} F\left(e^{-\rho+i \theta}\right) e^{-n i \theta} d \theta \tag{1}
\end{equation*}
$$

where ρ is the root of the equation

$$
n=\sum_{\nu=1}^{m} \frac{\nu}{e^{\nu \rho}-1} .
$$

The essential point in Szekeres's proof is this determination of ρ, by which it is shown that the integral over the neighborhood of the point $\theta=0$ in (1) gives the principal term of the asymptotic formula for $P(n, m)$.

In this paper, we shall prove, by a method partly analogous to Szekeres's proof, an asymptotic formula for the number $T(n, m ; k)$ of the partitions of n into k-th ($k \geqq 1$) powers of prime numbers not exceeding m. Our result is stated as follows:

THEOREM. Let n and m be sufficiently large integers and $n^{1 / k} \geqq m$. Then we have, uniformly in n and m,

$$
T(n, m ; k)=\frac{1}{\sqrt{2 \pi A_{2}}} e^{n_{\alpha}+A_{1}}\left\{1+O\left(\max \left(n^{-\frac{k}{2(k+1)(k+2)}}, m^{-\frac{k}{2(k+2)}}\right)\right)\right\}
$$

where α is the root of equation

$$
\begin{equation*}
n=\sum_{p \leqq m} \frac{p^{k}}{e^{\alpha p^{k}}-1} \tag{2}
\end{equation*}
$$

