Cohomology mod p of the p-fold symmetric products of spheres.

By Minoru NAKAOKA

(Received May 17, 1957)

1. Introduction

In this note we shall study the cohomology modulo p of the p-fold symmetric product $\mathfrak{S}_p(S^n)$ of an *n*-sphere S^n $(n \ge 1)$, where p is an odd prime. Let Z_p denote the group of integers modulo p. As usual, denote by \mathcal{P}^s the reduced p-th power, by Δ_p the Bockstein homomorphism and by \smile the cup product. Then our main result is stated as follows:

THEOREM 1. We have $H^n(\mathfrak{S}_p(S^n); Z_p) \approx Z_p$. Denote by h a generator of $H^n(\mathfrak{S}_p(S^n); Z_p)$. Then a set of generators for the cohomology group $H^*(\mathfrak{S}_p(S^n); Z_p)$ can be formed with all elements of the following four types:

(I) $\mathbf{1}, \mathbf{1}$ (II) $\mathcal{P}^{s}(h)$ $(0 \leq s \leq n/2),$ (III) $\Delta_{p} \mathcal{P}^{s}(h)$ $(1 \leq s < n/2),$

(IV) h^q ($2 \leq q < p$), where $h^q = h - h - \dots - h$ (q factors).

Define B(n, p) as a set of all elements of the above types (I)~(IV) or (I)~(III) according as n is even or odd. Then B(n, p) is linearly independent.

We shall also calculate the cup products and the reduced powers in $H^*(\mathfrak{S}_p(S^n); \mathbb{Z}_p)$ (§ 5).

Our proof depends on the results about the cohomology of the *p*-fold cyclic product $\mathcal{B}_p(S^n)$ of S^n , which I have obtained in the paper [4],²⁾ together with the technique which was used by Steenrod to prove Theorem 4.8 in his paper [7].

Throughout this paper, the coefficient group is always Z_p , and hence we shall hereafter omit to mention it.

2. Symmetric, cyclic, cartesian products

Denote by \mathfrak{S}_p the symmetric group of the letters $1, 2, \dots, p$. Let $t \in \mathfrak{S}_p$ be an element defined by $t(j) = j+1 \mod p$ $(j=1, 2, \dots, p)$, and

^{1) 1} denotes the unit cohomology class.

²⁾ Numbers in square brackets refer to the bibliography at the end of the paper.