Cohomology mod p of the p-fold symmetric products of spheres.

By Minoru Nakaoka

(Received May 17, 1957)

1. Introduction

In this note we shall study the cohomology modulo p of the p-fold symmetric product $\mathfrak{S}_{p}\left(\mathrm{~S}^{n}\right)$ of an n-sphere $S^{n}(n \geqq 1)$, where p is an odd prime. Let Z_{p} denote the group of integers modulo p. As usual, denote by \mathscr{Q}^{s} the reduced p-th power, by Δ_{p} the Bockstein homomorphism and by - the cup product. Then our main result is stated as follows:

THEOREM 1. We have $H^{n}\left(\mathfrak{S}_{p}\left(S^{n}\right) ; Z_{p}\right) \approx Z_{p}$. Denote by h a generator of $H^{n}\left(\mathfrak{S}_{p}\left(\mathrm{~S}^{n}\right) ; Z_{p}\right)$. Then a set of generators for the cohomology group $H^{*}\left(\mathbb{S}_{p}\left(\mathrm{~S}^{n}\right) ; Z_{p}\right)$ can be formed with all elements of the following four types:
(I) $1,{ }^{1)} \quad$ (II) $\mathscr{P}^{s}(h)(0 \leqq s \leqq n / 2), \quad\left(\right.$ III) $\Delta_{p} \mathscr{P}^{s}(h)(1 \leqq s<n / 2)$,
(IV) $h^{q}(2 \leqq q<p)$, where $h^{q}=h \smile h \smile \cdots \smile h$ (q factors).

Define $B(n, p)$ as a set of all elements of the above types (I)~(IV) or (I)~(III) according as n is even or odd. Then $B(n, p)$ is linearly independent.

We shall also calculate the cup products and the reduced powers in $H^{*}\left(\mathbb{S}_{p}\left(S^{n}\right) ; Z_{p}\right)(\S 5)$.

Our proof depends on the results about the cohomology of the p-fold cyclic product $\mathcal{Z}_{p}\left(S^{n}\right)$ of S^{n}, which I have obtained in the paper [4], ${ }^{2)}$ together with the technique which was used by Steenrod to prove Theorem 4.8 in his paper [7].

Throughout this paper, the coefficient group is always Z_{p}, and hence we shall hereafter omit to mention it.

2. Symmetric, cyclic, cartesian products

Denote by \mathfrak{S}_{p} the symmetric group of the letters $1,2, \cdots, p$. Let $t \in \mathscr{S}_{p}$ be an element defined by $t(j)=j+1 \bmod p(j=1,2, \cdots, p)$, and

[^0]
[^0]: 1) $\mathbf{1}$ denotes the unit cohomology class.
 2) Numbers in square brackets refer to the bibliography at the end of the paper.
