On Prüfer rings.

By Akira HATTORI

(Received March 25, 1957)

To find a necessary and sufficient condition for an integral domain Λ to satisfy the following condition (C): (C) If A and B are torsion-free Λ -modules, then $A \bigotimes_{\Lambda} B$ is also a torsion-free Λ -module. This is a problem recently proposed by M. Nagata.¹⁾

We know, following J. Dieudonné,²⁾ that (C) is satisfied by any Dedekind ring, and more generally by any Prüfer ring, as is shown by H. Cartan and S. Eilenberg in their recent publication.³⁾ In this paper, we shall prove conversely that a ring satisfying (C) is necessarily a Prüfer ring (Theorem 2). This will solve the above problem completely, and at the same time yield a characterization of Prüfer rings.⁴⁾

Let Λ denote an integral domain (with an identity). Instead of $A \otimes_{\Lambda} B$, $\operatorname{Tor}_{n}^{\Lambda}(A, B)$, $\operatorname{Hom}_{\Lambda}(A, B)$, $\operatorname{Ext}_{\Lambda}^{n}(A, B)$, we shall use simplified notations $A \otimes B$, $\operatorname{Tor}_{n}(A, B)$, $\operatorname{Hom}(A, B)$, $\operatorname{Ext}^{n}(A, B)$, A and B being Λ -modules. (See HA, for the definition of these *functors*).

LEMMA 1. For a finitely (Λ -) generated torsion-free Λ -module A, there exists a free Λ -module F on finite basis containing A and such that the residue class module F/A is a torsion module.

PROOF. We have only to modify the proof of HA, Prop. VII. 2.4: Let Q be the quotient field of Λ , then A is a submodule of $Q \otimes A$, and a system of Λ -generators $\{a_1, \dots, a_r\}$ is also a system of Q-generators of the vector space $Q \otimes A$ over Q. Hence the set $\{a_1, \dots, a_r\}$ contains a Q-basis of $Q \otimes A$, say $\{a_1, \dots, a_s\}$. If

$$a_i = \sum_{j=1}^s q_{ij}a_j$$
, $i = 1, \dots, r$, $q_{ij} \in Q$,

¹⁾ Sûgaku, vol. 6.1 (July, 1954), Problem 6.1.13.

²⁾ J. Dieudonné, *Sur les produits tensoriels*, Ann. de l'Ecole Norm. Sup. LXIV (1947), pp. 101-117. Théorème 3.

³⁾ H. Cartan and S. Eilenberg, *Homological algebra*, Princeton Univ. Press (1956). Prop. VII. 4.5. In the following we shall refer to this book by *HA*.

⁴⁾ The author published this result already in Sûgaku, vol. 8. (1957).