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Groups of projective transformations and groups
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In 1928, M. S. Knebelman [7] proved that a group of projective
transformations in an n-dimensional affinely connected manifold pre-
serves a projectively related affine connection if the group is of order
$r\leqq n$ . In this respect, it seems to be interesting to ask whether a
group of conformal transformations of a Riemannian metric preserves
or not another Riemannian metric. In \S 1 we shall show that a
group $G$ of projective transformations of an affine connection leaves
another projectively related affine connection invariant if $G$ is compact.
For a transitive group $G$ we shall further prove that the same
remains valid, if the isotropy group of $G$ is compact, or, if the
identity component of the linear isotropy group of $G$ is irreducible
and the space is projectively non-fiat. In \S 2 we shall obtain, con-
cerning groups of conformal transformations, some results analogous
to those proved in \S 1.

On the other hand, the compactness, the completeness or the
irreducibility of a Riemannian manifold implies strong restrictions on
affine, conformal or isometric transformations [1, 3, 6, 8, 10, 11, 19, 20].
In this respect, in \S 3 we shall study groups of projective transfor-
mations preserving the Ricci tensor in an affinely connected manifold
and obtain the fact that such groups are affine in a space, which is
complete, or, whose homogeneous holonomy group has no invariant
hyperplane. In \S 4 such groups will be discussed in a complete or
compact Riemannian manifold. In \S 5 we shall study groups of
conformal transformations leaving the Ricci tensor invariant in a
complete or compact Riemannian manifold and obtain some results
analogous to those proved In \S 4.

The last section is devoted to the proof of a lemma used In \S 1
concerning groups of affine motions of the ordinary affine space.


