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\S 1. Decomposable spaces

Consider two affinely connected spaces without torsion $A_{p}$ and
$A_{n-p}$ of the dimension $p$ and $n-p$ respectively. Denote by $\Gamma_{j^{1}k^{1}}^{i^{1}}(x^{l}$

’
$)$

and $\Gamma_{j^{2}k}^{i^{2}}:(x^{t^{2}})$ the connections, $(x^{i}$
‘

$)$ and $(x^{i^{2}})$ the coordinates on $A_{p}$ and
$A_{n-p}$ respectively. As to the ranges of indices we shall adopt the
following convention $i,j,$ $k,$ $l=1,\cdots,$ $n;i^{1},j^{1},$ $k^{1},$ $l^{1}$ (indices of the first
kind) $=1,\cdots,p;i^{2},j^{2},$ $k^{2},$ $l^{2}$ (indices of the second kind) $=p+1,\cdots,$ $n$.

The n-dimensional affinely connected space $A_{n}$ with coordinates
$(x^{1}, x^{f2})$ and the connection $\tilde{\Gamma}_{jk}^{i}$ will be called the product space of $A_{p}$

and $A_{n-p}$ , if the components of.the connection with the indices of
different kind vanish and $\tilde{\Gamma}_{j^{1}k^{1}}^{i^{1}}=\Gamma_{j^{1}h^{1}}^{i^{1}}(x^{l^{1}}),\tilde{\Gamma}_{j^{2}k^{2}}^{i^{2}}=\Gamma^{i_{2}^{2}}jk^{2}(x^{l^{2}})$ . In this case
$A_{t2}$ is said to be decomposable, and the coordinates $(x^{1}, x^{2})$ are called
a code. When $(y^{i^{1}})$ and $(y^{i^{2}})$ are normal coordinates on $A_{p}$ and $A_{n-p}$

respectively, then $(y^{i^{1}}, y^{i^{2}})$ is a normal code on $A_{n}$ ([1]).
An object defined on a decomposable $A_{n}$ is said to be breakable

if its components with the indices of different kind are all zero with
respect to a code. If an object is breakable and its components with
indices of the same kind depend, in any code, only on the variables of
that kind, then the object is called a product object.

\S 2. Symmetric affine space

An n-dimensional affinely connected space $A_{n}$ without torsion is
said to be symmetric in Cartan’s sense if the reflexion about any
point in $A_{n}$ is an affine collineation. An $A_{n}$ with connexion $\Gamma_{jh}^{i}$ is
symmetric if and only if the first covariant derivative of the curva-
ture tensor vanishes, I. $e$ .

$R_{j^{i}kl;m}=0$ ,
where

$R_{jkl}^{i}=\Gamma_{jh.l}^{i}-\Gamma_{jl,k}^{i}+\Gamma_{jh}^{h}\Gamma_{hl}^{i}-\Gamma_{jl}^{h}\Gamma_{hk}^{i}$ ;


