On decomposable symmetric affine spaces.

By Atsuo Fujimoto

(Received Oct. 5, 1956)

§ 1. Decomposable spaces

Consider two affinely connected spaces without torsion A_p and A_{n-p} of the dimension p and n-p respectively. Denote by $\Gamma_{j^1k^1}^{i^1}(x^{n})$ and $\Gamma_{j^2k^2}^{i^2}(x^{l^2})$ the connections, (x^{i^1}) and (x^{i^2}) the coordinates on A_p and A_{n-p} respectively. As to the ranges of indices we shall adopt the following convention $i, j, k, l=1, \dots, n; i^1, j^1, k^1, l^1$ (indices of the first kind)=1,..., $p; i^2, j^2, k^2, l^2$ (indices of the second kind)= $p+1, \dots, n$.

The *n*-dimensional affinely connected space A_n with coordinates (x^{i1}, x^{i2}) and the connection $\tilde{\Gamma}^i_{jk}$ will be called the *product space* of A_p and A_{n-p} , if the components of the connection with the indices of different kind vanish and $\tilde{\Gamma}^{i1}_{j1k1} = \Gamma^{i1}_{j1k1}(x^{l1})$, $\tilde{\Gamma}^{i2}_{j2k2} = \Gamma^{i2}_{j2k2}(x^{l2})$. In this case A_n is said to be *decomposable*, and the coordinates (x^i, x^2) are called a code. When (y^{i1}) and (y^{i2}) are normal coordinates on A_p and A_{n-p} respectively, then (y^{i1}, y^{i2}) is a normal code on A_n ([1]).

An object defined on a decomposable A_n is said to be *breakable* if its components with the indices of different kind are all zero with respect to a code. If an object is breakable and its components with indices of the same kind depend, in any code, only on the variables of that kind, then the object is called a *product object*.

§ 2. Symmetric affine space

An *n*-dimensional affinely connected space A_n without torsion is said to be *symmetric* in Cartan's sense if the reflexion about any point in A_n is an affine collineation. An A_n with connexion Γ^i_{jk} is symmetric if and only if the first covariant derivative of the curvature tensor vanishes, i. e.

$$R^i_{jkl;\,m}=0$$
 ,

where

$$R^{i}_{jkl} = \Gamma^{i}_{jk,l} - \Gamma^{i}_{jl,k} + \Gamma^{h}_{jk}\Gamma^{i}_{hl} - \Gamma^{h}_{jl}\Gamma^{i}_{hk};$$