On decomposable symmetric affine spaces.

By Atsuo Fujimoto

(Received Oct. 5, 1956)

§ 1. Decomposable spaces

Consider two affinely connected spaces without torsion A_{p} and A_{n-p} of the dimension p and $n-p$ respectively. Denote by $\Gamma_{j^{1} k_{1}}^{i}\left(x^{l 1}\right)$ and $\Gamma_{j=k^{2}}^{i 2}\left(x^{l^{2}}\right)$ the connections, $\left(x^{i^{i}}\right)$ and $\left(x^{i^{2}}\right)$ the coordinates on A_{p} and A_{n-p} respectively. As to the ranges of indices we shall adopt the following convention $i, j, k, l=1, \cdots, n ; i^{1}, j^{1}, k^{1}, l^{1}$ (indices of the first kind) $=1, \cdots, p ; i^{2}, j^{2}, k^{2}, l^{2}$ (indices of the second kind) $=p+1, \cdots, n$.

The n-dimensional affinely connected space A_{n} with coordinates ($x^{i 1}, x^{i 2}$) and the connection $\tilde{\Gamma}_{j k}^{i}$ will be called the product space of A_{p} and A_{n-p}, if the components of the connection with the indices of different kind vanish and $\widetilde{\Gamma}_{j^{1} k^{1}}^{i^{1}}=\Gamma_{j^{2} k^{1}}^{i 1}\left(x^{l 1}\right), \widetilde{\Gamma}_{j^{2} k^{2}}^{i^{2}}=\Gamma_{j^{2} k^{2}}^{i 2}\left(x^{l^{2}}\right)$. In this case A_{n} is said to be decomposable, and the coordinates (x^{1}, x^{2}) are called a code. When ($y^{i 1}$) and ($y^{i 2}$) are normal coordinates on A_{p} and A_{n-p} respectively, then ($y^{i^{1}}, y^{i^{2}}$) is a normal code on A_{n} ([1]).

An object defined on a decomposable A_{n} is said to be breakable if its components with the indices of different kind are all zero with respect to a code. If an object is breakable and its components with indices of the same kind depend, in any code, only on the variables of that kind, then the object is called a product object.

§ 2. Symmetric affine space

An n-dimensional affinely connected space A_{n} without torsion is said to be symmetric in Cartan's sense if the reflexion about any point in A_{n} is an affine collineation. An A_{n} with connexion $\Gamma_{j k}^{i}$ is symmetric if and only if the first covariant derivative of the curvature tensor vanishes, i.e.

$$
R_{j k l ; m}^{i}=0,
$$

where

$$
R_{j k l}^{i}=\Gamma_{j k, l}^{i}-\Gamma_{j l, k}^{i}+\Gamma_{j k}^{h} \Gamma_{h l}^{i}-\Gamma_{j l}^{h} \Gamma_{h k}^{i} ;
$$

