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1. Introduction

Recently, K. Morita [4] has introduced the following idea. Let
$X$ be a topological space and $\{A_{\alpha}\}$ a closed covering of $X$. Then $X$

is said to have the weak topology with respect to $\{A_{\alpha}\}$ , if the union of
any subcollection $\{A_{\beta}\}$ of $\{A_{\alpha}\}$ is closed in $X$ and any subset of
$\bigcup_{\beta}A_{\beta}$ whose intersection with each $A_{\beta}$ is closed relative to the sub-

space topology of $A_{\beta}$ is necessarily closed in the subspace
$\bigcup_{\beta}A_{\beta}$

.
E. Michael [3] has introduced the following notion. A topological

space $X$ is called an absolute extensor (resp. absolute neighborhood
extensor) for metric spaces if, whenever $Y$ is a metric space and $B$ is
a closed subset of $Y$, then any continuous mapping from $B$ into $X$

can be extended to a continuous mapping from $Y$ (resp. some neigh-
borhood of $B$ in Y) into $X$. A topological space $X$ is called an
absolute retract (resp. absolute neighborhood retract) for metric spaces
if, whenever $X$ is a closed subset of a metric space $Y$, there exists
a continuous mapping from $Y$ (resp. some neighborhood of $Y$ in $X$)

onto $X$ which keeps $Xpointwi^{q}\llcorner e$ fixed. We shall use the following
abbreviations as Michael [3]:

AE =absolute extensor.
ANE $=absolute$ neighborhood extensor.
AR $=absolute$ retract.
ANR $=absolute$ neighborhood retract.

The purpose of this paper is to establish the following theorem.

THEOREM. Let $X$ be a topological space having the weak topology
with respect to a closed covering $\{A_{\alpha}\}$ . We assume that, for each finite
subcollection $\{A_{\alpha_{1}}, A_{\alpha_{2}},\cdots, A_{a_{n}}\}$ of $\{A_{\alpha}\}$ with non-void intersection, $\bigcap_{i\Rightarrow 1}^{n}A_{\alpha_{i}}$


