Journal of the Mathematical Society of Japan

Note on an absolute neighborhood extensor for metric spaces.

By Yukihiro KODAMA

(Received May 6, 1955)

1. Introduction

Recently, K. Morita [4] has introduced the following idea. Let X be a topological space and $\{A_{\alpha}\}$ a closed covering of X. Then X is said to have the weak topology with respect to $\{A_{\alpha}\}$, if the union of any subcollection $\{A_{\beta}\}$ of $\{A_{\alpha}\}$ is closed in X and any subset of $\bigcup_{\beta} A_{\beta}$ whose intersection with each A_{β} is closed relative to the subspace topology of A_{β} is necessarily closed in the subspace $\bigcup_{\alpha} A_{\beta}$.

E. Michael [3] has introduced the following notion. A topological space X is called an *absolute extensor* (resp. *absolute neighborhood extensor*) for metric spaces if, whenever Y is a metric space and B is a closed subset of Y, then any continuous mapping from B into X can be extended to a continuous mapping from Y (resp. some neighborhood of B in Y) into X. A topological space X is called an *absolute retract* (resp. *absolute neighborhood retract*) for metric spaces if, whenever X is a closed subset of a metric space Y, there exists a continuous mapping from Y (resp. some neighborhood of Y in X) onto X which keeps X pointwise fixed. We shall use the following abbreviations as Michael [3]:

AE = absolute extensor.

ANE = absolute neighborhood extensor.

AR = absolute retract.

ANR = absolute neighborhood retract.

The purpose of this paper is to establish the following theorem.

THEOREM. Let X be a topological space having the weak topology with respect to a closed covering $\{A_{\alpha}\}$. We assume that, for each finite subcollection $\{A_{\alpha_1}, A_{\alpha_2}, \dots, A_{\alpha_n}\}$ of $\{A_{\alpha}\}$ with non-void intersection, $\bigcap_{i=1}^{n} A_{\alpha_i}$