On the Poisson distribution.

By Hisao Watanabe

(Receivd Nov. 25, 1955)

Let $\cdots, x_{-1}, x_{0}, x_{1}, \cdots$ be the points on the real line such that $\cdots x_{-1}<x_{0}<x_{1} \cdots\left(x_{0} \equiv 0\right)$. Then if $\left\{x_{j}-x_{j-1}\right\}(j=0,1,2, \cdots)$ are independent random variables with common distribution function $F(x)$, where $F(x)$ is the distribution function of a non-negative random variable with $F(-0)=0, F(\infty)=1$, we shall say that these points are distributed at random according to $F(x)$.

Now consider a system of particles $P_{n}(n=0, \pm 1, \pm 2, \cdots)$ which start from the above stated random positions $x_{n}(n=0, \pm 1, \pm 2, \cdots)$. When we denote by $X_{n}(t)$ the displacement of the n-th particle P_{n} up to the time t, the coordinate $Y_{n}(t)$ of the particle at the time t is

$$
Y_{n}(t)=x_{n}+X_{n}(t), \quad X_{n}(0)=0, \quad t \geqq 0
$$

In the following, let us confine ourselves to the discrete time parameter $t=0,1,2, \cdots$, and we shall impose the following conditions on the movement of the particles. The random variables $X_{n}(t)-X_{n}(t-1)$ are mutually independent for each $n, t,-\infty<n<\infty, t \geqq 0$, and obey the same distribution function $G(x)$ for all n, t, moreover, for each $t>0$ the classes of random variables

$$
\left\{X_{n}(t), n=0, \pm 1, \pm 2, \cdots\right\} \quad\left\{x_{n}, n=0, \pm 1, \pm 2, \cdots\right\}
$$

are mutually independent.
By the Fourier analytical method [2], Prof. Maruyama [3] investigated the limiting distribution of the number $N_{I}(t)$ of particles lying in an interval $I=[a, b]$ at t under the condition that $G(x)$ is a non-lattice distribution function. In this note, we shall discuss the problem when $G(x)$ is a lattice distribution function with maximum $\operatorname{span} d>0$.

THEOREM. If $0<m=\int_{-\infty}^{+\infty} x d F(x)<\infty$, then we have

