A metamathematical theorem on functions.

By Gaisi TAKEUTI

(Received July 2, 1955)

In our former paper [2], [3], we have introduced a logical system GLC and a subsystem GLC of GLC, as generalizations of Gentzen's LK (cf. [1]). We have also defined the notion of functions in GLC in [2]. This paper is most related to [3], where we have dealt with $G^{1}LC$ without bound functions. We shall introduce in this paper another logical system called HLC ('hierarchical' logic calculus) lying between $G^{1}LC$ and LK (§ 1). We shall define also 'functionals' in generalization of the notion of functions.

The purpose of the present paper is to prove that the consistent system under $G^{1}LC$ without bound function or under HLC remains consistent after 'adjunction' of the concept of functionals, under certain conditions. Our Main Theorem will read as follows:

MAIN THEOREM: Let Γ_0 be a system of axioms consistent under G^1LC without bound function or under HLC. Suppose Γ_0 contains axioms of equality (See § 1 for definition), and let the following sequences be provable.

$$\Gamma_{0} \to \forall \varphi_{1} \cdots \forall \varphi_{n} \forall x_{1} \cdots \forall x_{m} \exists y F(\varphi_{1}, \cdots, \varphi_{n}, x_{1}, \cdots, x_{m}, y)$$

$$\Gamma_{0} \to \forall \varphi_{1} \cdots \forall \varphi_{n} \forall x_{1} \cdots \forall x_{m} \forall y \forall z (F(\varphi_{1}, \cdots, \varphi_{n}, x_{1}, \cdots, x_{m}, y))$$

$$\wedge F(\varphi_{1}, \cdots, \varphi_{n}, x_{1}, \cdots, x_{m}z) \vdash y = z).$$

Let M be a functional not contained in Γ_0 , and suppose further, in case of HLC, that $F(\alpha_1,\dots,\alpha_n,a_1,\dots,a_m,b)$ does not contain \forall on f-variables. Then Γ_0 and the following axiom are consistent.

$$\forall \varphi_1 \cdots \forall \varphi_n \forall x_1 \cdots \forall x_m F(\varphi_1, \cdots, \varphi_n, x_1, \cdots, x_m, M(\varphi_1, \cdots, \varphi_n, x_1, \cdots, x_m)).$$

The conclusion of this theorem holds also in LK by theorem 2, proved in § 1.

After some preparations in § 1, we shall prove our main theorem