On the fundamental conjecture of GLC III.

By Gaisi TAKEUTI

(Received Nov. 11, 1954)

This paper is a continuation of [1] and [2]. We use the same notions and the notations as in these papers. See in particular [1] as to the meaning of the fundamental conjecture. We have proved this conjecture under several conditions in [1], [2]. In this paper, we shall prove it under some other conditions.

§ 1. Formulation of the theorem.

Until at the end of Appendex, the logical symbols \exists and \lor are not used. In this section we introduce some new notions and notations.

1.1. A formula in a proof-figure and a logical symbol in a formula We shall speak of a 'formula in a proof-figure', when the formula is considered together with the place where it occupies in the proof-figure. Let A and B be two formulas in a proof-figure \(\mathbb{P} \). Then A is equal to B if and only if A is in the same place as B in \(\mathbb{P} \). We shall also speak of logical symbol in a formular or in a proof-figure sequence and inferences etc. in a proof-figure in analogous meanings. We use the symbols \(\mathbb{H} \), \(\mathbb{P} \) etc. as metamathematical variables to represent logical symbols in a formula or in a proof-figure.

1.2. Semi-formula, quasi-formula.

A figure of the form $H(x,\dots,y,\varphi,\dots,\psi)$ with bound variables x,\dots,y and bound f-variables φ,\dots,ψ is called a semi-formula, if rnd only if $H(a,\dots,b,\alpha,\dots,\beta)$ obtained from $H(x,\dots,y,\varphi,\dots,\psi)$ by substituting free variables a,\dots,b and free f-variables α,\dots,β for x,\dots,y and φ,\dots,ψ is a formula and $x,\dots,y,\varphi,\dots,\psi$ are different from each other and are not contained in $H(a,\dots,b,\alpha,\dots,\beta)$.

If $\{x,\dots,y\}H(x,\dots,y)$ is a formula with argument-places, then $H(x,\dots,y)$ is clearly a semi-formula.