Journal of the Mathematical Society of Japan

A generalization of the principal ideal theorem

By Fumiyuki TERADA

(Received Nov. 25, 1955)

The purpose of this paper is to give a cohomology-theoretical description of a generalized principal ideal theorem. The definitions and the notations in this paper are borrowed from C. Chevalley's lecture notes at Nagoya University [1].

1. Let G be a finite group, and S be an automorphism of the group G. The image of an element $\sigma \in G$ by S will be denoted by $S(\sigma)$. Let H be the invariant subgroup of G, which is generated by all the elements $S(\sigma)\sigma^{-1}, \sigma\tau\sigma^{-1}\tau^{-1}(\sigma,\tau G)$. Then H is an S-invariant subgroup of G, and G/H is abelian.

Let A be a G-module. We shall denote a submodule of A which is generated by all the elements $(1-\sigma)a$ ($\sigma \in G, a \in A$) by I_GA . Especially, if A is the group ring Z(G) over the integral domain Z of all rational integers, the submodule $I_GZ(G)$ will be denoted by I_G . We shall use analogous symbols concerning subgroups of G.

2. We shall consider, in this section, certain mappings of the cohomology groups of G.

Let $x, y \in I_G$, and $n \in Z$. Then, $x \otimes y \otimes n \to x \otimes ny$ defines an isomorphism $\psi_G: H^{-2}(G, Z) \to H^{-1}(G, I_G)$. We have also an isomorphism $\psi_H: H^{-2}(H, Z) \to H^{-1}(H, I_H)$.

Let A be a G-module, and $\tau \in G$, $a(\tau) \in A$ such that $\sum a(\tau) = 0$. Then, $\sum \tau \otimes a(\tau) \rightarrow a(e)$, where e is the unit element of G, induces an isomorphism $H^{-1}(G, A) \rightarrow A^{G \rightarrow 0}/I_G A$. Especially, if $A = I_G$, we have an isomorphism $\varphi_G : H^{-1}(G, I_G) \rightarrow I_G/I_G I_G$, and also, $\varphi_H : H^{-1}(H, I_G) \rightarrow I_G^{H \rightarrow 0}/I_H I_G$.

We have also an isomorphism $\phi: H^{-1}(H, I_H) \rightarrow H^{-1}(H, I_G)$ (cf. [1] Theorem 7.1).

Let j_{-r} be the injection mapping $H^{-r}(H, I_G) \rightarrow H^{-r}(G, I_G)$, r = 1,2. Then, $\varphi_G j_{-1} \varphi_H^{-1}$ maps $I_G^{H \to 0} / I_H I_G$ into $I_G / I_G I_G$, and the kernel is the subgroup $(I_{G'}, I_H I_G) / I_H I_G$ of the group $I_G^{H \to 0} / I_H I_G$, where G' is the commutatorsubgroup of G.

The ideal I_G of Z(G) is generated by all the elements $1-\sigma, \sigma \in G$, and each element of I_G is described as $\sum a(\sigma) (1-\sigma)$, where $a(\sigma) \in Z$.