Hopf's ergodic theorem on Fuchsian groups.

By Masatsugu Tsuji

(Received Feb. 22 1955)

1. Hopf's theorem.

Let a non-euclidean metric in |z| < 1 be defined by

$$ds = \frac{2|dz|}{1 - |z|^2}, \qquad d\sigma = \frac{4dxdy}{(1 - |z|^2)^2} (z = x + iy). \tag{1}$$

Let $\eta_1=e^{i\theta}$, $\eta_2=e^{i\varphi}$ be two points on |z|=1, then the pair (η_1,η_2) can be considered as a point of a torus $\theta: 0 \le \theta \le 2\pi$, $0 \le \varphi \le 2\pi$. For a measurable set E on θ , we define its measure by

$$\mu(E) = \iint_E d\theta d\varphi$$
, so that $\mu(\Theta) = 4\pi^2$. (2)

Let G be a Fuchsian group of linear transformations, which make |z| < 1 invariant and S_{ν} be any substitution of G and

$$T_
u$$
: $\eta_1' = S_
u(\eta_1)$, $\eta_2' = S_
u(\eta_2)$,

then the totality of T_{ν} consititutes a group $\mathfrak{G} = G \times G$. Hopf¹⁾ proved

THEOREM 1. Let D_0 be the fundamental domain of G. If $\sigma(D_0) < \infty$, then there exists no measurable set E on Θ , which is invariant by \mathfrak{G} and $0 < \mu(E) < 4\pi^2$, so that if $\mu(E) > 0$, then $\mu(E) = 4\pi^2$.

In the former paper²⁾, I gave another proof of the theorem. I could simplify my former proof a little, which we shall show in §3 and as an application of the theorem, we shall prove an analogue of Weyl's theorem on uniform distribution for Fuchsian groups in §5.

¹⁾ E. Hopf: Fuchsian groups and ergodic theory. Trans. Amer. Math. Soc. 39 (1936). Ergodentheorie. Berlin (1937).

²⁾ M. Tsuji: On Hopf's ergodic theorem. Proc. Imp. Acad. (1944). Jap. Journ. Math. 19 (1945).