The number of solutions of some equations in a finite field.

By L. Carlitz

(Received Dec. 25, 1953)

1. Introduction. The writer [1], [3] has determined the number of solutions of certain types of equations in a finite field. For example, making use of the well-known formulas for the number of solutions of $Q\left(\xi_{1}, \cdots, \xi_{r}\right)=\alpha$, where Q denotes a quadratic form with coefficients in $G F(q), q$ odd, such equations as

$$
\begin{equation*}
Q\left(\xi_{1}, \cdots, \xi_{r}\right)=\eta_{1}^{\ell_{1}} \cdots \eta_{s}^{e_{s}} \tag{1.1}
\end{equation*}
$$

and

$$
\begin{equation*}
Q\left(\xi_{1}, \cdots, \xi_{2 r}\right)=f\left(\eta_{1}, \cdots, \eta_{s}\right), \tag{1.2}
\end{equation*}
$$

where $f(\eta)$ donotes a polynomial that never vanishes, are readily handled. R. G. Pohrer [6] has found the number of solutions for a great many equations of this and other kinds. ${ }^{1}$.

In the present note we consider a few additional types. In general, when a quadratic form $Q\left(\xi_{1}, \cdots, \xi_{r}\right)$ occurs in an equation, the case r odd is more difficult; this is illustrated for example by (1.2). However for an equation of the type

$$
\begin{equation*}
Q\left(\xi_{1}, \cdots, \xi_{2 r+1}\right)=g\left(\eta_{1}, \cdots, \eta_{s}\right), \tag{1.3}
\end{equation*}
$$

it may be possible to find explicit formulas for the number of solutions when the polynomial $g(\eta)$ satisfies certain conditions. A particularly simple case is

$$
\begin{equation*}
g(\eta)=\prod_{i=1}^{s}\left(\eta_{i}^{2}+\beta_{i} \eta_{i}+\gamma_{i}\right) ; \tag{1.4}
\end{equation*}
$$

1) To find the number of solutions of such simultaneous equations in a finite field is also of interest in connection with the algebraic geometry, as was pointed out by A. Weil: Bull. Amer. Math. Soc. 55 (1949) pp. 497-508.
