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l.–Introduction.–The problem to determine the order $f(n)$ of
the free distributive lattice $FD(n)$ generated by $n$ symbols $\gamma_{1},$ $\cdots,$ $\gamma_{n}$

was first proposed by Dedekind, but very little is known about this
number [1, p. 146]. Only the first six values of $f(n)$ are computed,
and enumerations of further $f(n)$ appear to lie beyond the scope of
any reasonable methods known today. It might, however, be pointed
out that Morgan Ward, who found $f(6)$ by the help of computing
machines, stated [2] an asymptotic relation

$\log_{2}\log_{2}f(n)\sim n$

and that the present author proved in a previous note [3] that

$f(n)\equiv 0(mod 2)$ if $n=0(mod 2)$ .
An inspection of numerical results $f(n),$ $n\leqq 6$ suggests strongly

the following asymptotic equivalence

$(\star)$ $\log_{2}f(n)\sim\sqrt{\frac{2}{\pi}}2^{n}n^{-1}2^{-}$

The author cannot prove or disprove this interesting relation, but he
proves in the present paper that

$\sqrt{\frac{2}{\pi}}n-1-1_{-\log_{2}\sqrt{\frac{n\pi}{2}}(1+O(n^{-I}))}$

(Theorem 2), which in particular implies that for an $arbitr_{/}ary$ positive
constant $\delta$

$2^{\pi}n^{-1}z^{-\delta}<\log_{2}f(n)<2^{n}n^{-1}\tau^{+\delta}$

if $n$ is sufficiently large, and that


