Distributions of Genotypes after a Panmixia

By Yûsaku Komatu

(Received Feb. 19, 1954)

1. Introduction.

Consider a population of size $2 N$ consisting of N females and N males. We observe a single inherited character which consists of m multiple alleles at one diploid locus denoted by

$$
A_{i}
$$

$$
(i=1, \cdots, m)
$$

and of which the inheritance is subject to Mendelian law.
There are $m(m+1) / 2$ possible genotypes $A_{a} A_{b}(a, b=1, \cdots, m ; a \leqq b)$ among which m types $A_{b} A_{b}(b=1, \cdots, m)$ are homozygous and $m(m-1) / 2$ types $A_{a} A_{b}(a, b=1, \cdots, m ; a<b)$ are heterozygous. Let the distributions of these $m(m+1) / 2$ genotypes $A_{a} A_{b}(a \leq b)$ in females and in males be designated by

$$
F_{a b} \text { and } \quad M_{a b} \quad(a, b=1, \cdots, m ; a \leqq b)
$$

or, as the aggregates, by

$$
\mathfrak{F}=\left(F_{11}, \cdots, F_{m m}, F_{12}, \cdots, F_{m-1, m}\right)
$$

and

$$
\mathfrak{M}=\left(M_{11}, \cdots, M_{m n}, M_{12}, \cdots, M_{m-1, m}\right)
$$

respectively, so that

$$
\sum_{a \leq b} F_{a b}=\sum_{a \leq b} M_{a b}=N .
$$

The order of genes in a genotype being immaterial, both genotypes $A_{a} A_{b}$ and $A_{b} A_{a}$ are regarded as identical each other even when the suffices a and b are distinct. Accordingly, we put $F_{a b}=F_{b a}$ and $M_{a b}$ $=M_{b a}$.

We now introduce a set of stochastic variables

$$
\mathfrak{G}=\left(C_{11}, \cdots, C_{m m}, C_{12}, \cdots, C_{m-1, m}\right)
$$

