On the multiplicative group of simple algebras.

By Goro TOYODA and Akira HATTORI

(Received Nov. 12, 1953)

Let A be a central simple algebra of finite dimension over a commutative field F which contains an infinite number of elements. Let B be a subalgebra of A different from both A and F. A subalgebra B' is called *conjugate* to B if there exists a regular element t of A such that $B'=tBt^{-1}$. If we denote by [B] the totality of subalgebras of A conjugate to B, the multiplicative group A^* of regular elements of A may be regarded as a transitive group of substitutions on [B] in a natural manner, and every element of the subgroup F^* of A^* (the multiplicative group of regular elements of F) gives rise to the identity substitution. Now, we have

THEOREM. F^* is precisely the kernel of the representation of A^* as a group of substitutions on [B].

This was proved previously by one of the writers in case where B is a simple subalgebra of A, and was applied to the structure-problem of the three dimensional rotation groups [3]. Our aim in the present paper is to show that the theorem is valid in the general form as above, and can be proved in even simpler way than in [3].

§ 1. We need a simple lemma on Kronecker product.

LEMMA. Let B and C ($\neq F$) be algebras with identity over F, and $A=B\times C$ their Kronecker product over F. If $t=b+c(b\in B, c\in C, c\notin F)$ is a regular element of A, we have $B\cap tBt^{-1}=V_B(b)$, where $V_B(b)$ denotes the set of all elements of B commutable with b.

PROOF. If $x \in tBt^{-1}$, there exists $y \in B$ such that (b+c)y=x(b+c), or equivalently, $(by-xb) \cdot 1=(x-y)c$. If, further, $x \in B$, we have by=xb as well as x=y in virtue of the linear disjointness of B and C over F. Hence $x \in V_B(b)$, i. e. $B \cap tBt^{-1} \subseteq V_B(b)$. Conversely, it is easily verified that $V_B(b) \subseteq B \cap tBt^{-1}$.

Now we proceed to the proof of the theorem. Let N(B) be the totality of those regular elements of A which give rise to the identity