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Let $A$ be a central simple algebra of finite dimension over a
commutative field $F$ which contains an infinite number of elements.
Let $B$ be a subalgebra of $A$ different from both $A$ and $F$. A sub $\cdot$

algebra $B^{\prime}$ is called coniugate to $B$ if there exists a regular element $t$

of $A$ such that $B^{\prime}=tBt^{-1}$ . If we denote by $[B]$ the totality of sub.
algebras of $A$ conjugate to $B$ , the multiplicative group $A^{*}$ of regular
elements of $A$ may be regarded as a transitive group of substitutions
on $[B]$ in a natural manner, and every element of the subgroup $p*$ of
$A^{*}$ (the multiplicative group of regular elements of $F$) gives rise to
the identity substitution. Now, we have

THEOREM. $F^{*}$ is precisely the kernel of the representation of $A^{*}$

as a group of substitutions on $[B]$ .
This was proved previously by one of the writers in case where

$B$ is a simple subalgebra of $A$ , and was applied to the structure-prob-
lem of the three dimensional rotation groups [3]. Our aim in the
present paper is to show that the theorem is valid in the general form
as above, and can be proved in even simpler way than in [3].

\S 1. We need a simple lemma on Kronecker product.
LEMMA. Let $B$ and $C(\neq F)$ be algebras with identity over $F$,

and $A=B\times C$ their Kronecker product over F. If $t=b+c(b\in B,$ $c\in C$,
$c\not\in F)$ is a regular element of $A$ , we have $B\cap tBt^{-1}=V_{B}(b)$ , where
$V_{B}(b)$ denotes the set of all elements of $B$ commutable with $b$ .

PROOF. If $xetBt^{-1}$ , there exists $y\in B$ such that $(b+c)y=x(b+c)$ ,
or equivalently, $(by-xb)\cdot 1=(x-y)c$. If, further, $xeB$, we have $by=xb$

as well as $x=y$ in virtue of the linear disjointness of $B$ and $Co\dot{v}er$

$F$. Hence $x\in V_{B}(b)$ , i. e. $B\cap tBt^{-1}\underline{\subset}V_{B}(b)$ . Conversely, it is easily
verified that $V_{B}(b)\underline{\subset}B\cap tBt^{-1}$ .

Now we proceed to the proof of the theorem. Let $N(B)$ be the
totality of those regular elements of $A$ which give rise to the identity


