Journal of the Mathematical Society of Japan

A note on unramified abelian covering surfaces of a closed Riemann surface.

By Akira MORI

(Received Feb. 11, 1954)

1. Introduction.

Let F be a closed Riemann surface of genus p, and \tilde{F} be an unramified and unbounded covering surface of F. If, above any closed curve on F, there never lie two curves on \tilde{F} , one of which is closed and the other open, \tilde{F} is said to be *regular*. As is well known, a regular covering surface \tilde{F} admits *covering transformations* onto itself, which are one-to-one and continuous and carry each point \tilde{P} on \tilde{F} into a point \tilde{P}' with the same projection as \tilde{P} . The totality of these transformations forms the *covering transformation group* $I'(\tilde{F})$, which characterizes \tilde{F} .

DEFINITION. A regular covering surface \tilde{F} of F is called an unramified abelian covering surface, if its covering transformation group $\Gamma(\tilde{F})$ is abelian.¹⁾

In the present note, we shall investigate the structure of unramified abelian covering surfaces in some detail (\$ 2–4), and prove some function-theoretic properties of these surfaces (\$ 5–6).

An example of such surfaces is given by the Riemann surface \tilde{F}_w of an *abelian integral* w,²⁾ where dw is an analytic differential of the first or the second kind defined on F. \hat{F}_w is an unramified and unbounded covering surface of F characterized by the following property: a curve $\tilde{\gamma}$ on \tilde{F}_w is closed if and only if its projection γ on F is closed

¹⁾ An "unramified abelian covering surface" of a closed Riemann surface corresponds to an "unramified abelian extension" of an algebraic function field. L. Sario [6], [7] used the term "Abelsche Überlagerungsfläche" or "abelian covering surface" for another sort of covering surfaces (one of which is called "die Überlagerungsfläche der Kommutatoren" in [1]), whose covering transformation groups are not abelian except for some simple cases.

²⁾ The Riemann surface of a *multiplicative function* gives a more general example.