On groups of projective collineations in a space of *K*-spreads.

By Kentaro YANO and Hitosi HIRAMATU

(Received July 29, 1953)

§ 0. Introduction.

In an affine space of paths:

(0.1)
$$\frac{d^2x^i}{ds^2} + \Gamma^i_{jk} \frac{dx^j}{ds} \frac{dx^k}{ds} = 0,$$

$$(a, b, c, \dots, i, j, k, \dots = 1, 2, \dots, N)$$

an affine collineation is defined as a point transformation which carries any path into a path and preserves the affine character of the parameter s on it. It was first shown by L. P. Eisenhart and M. S. Knebelman ([5], [6]) that a necessary and sufficient condition that an infinitesimal point transformation

$$(0.2) \bar{x}^i = x^i + \xi^i(x)dt$$

be an affine collineation is that ξ^i satisfy

(0.3)
$$\xi_{j,j,k}^{i} + \xi_{j,a} \Gamma_{jk,a}^{i} - \xi_{j,a}^{i} \Gamma_{jk}^{a} + \xi_{j,j}^{a} \Gamma_{ak}^{i} + \xi_{j,k}^{a} \Gamma_{ja}^{i} = 0,$$

where the comma followed by an index denotes partial differentiation with respect to x^{i} .

But, if we denote the Lie derivative ([9], [15]) of a geometric object \mathcal{Q} with respect to the infinitesimal point transformation (0.2) by $X\mathcal{Q}$, then condition (0.3) can be rewritten in a very simple form

$$(0.4) X\Gamma^{i}_{jk} = \xi^{i}_{;j;k} + R^{i}_{jkl} \xi^{l} = 0,$$

where the semi-colon followed by an index denotes covariant differentiation with respect to Γ^{i}_{jk} .

It is well known that the maximum order of a group of affine collineations in an N-dimensional space of paths is $N^2 + N$ and if the space admits a group of affine collineations of the maximum order, then the space is necessarily affinely flat ([5], [15]).