On Neumann's problem for a domain on a closed Riemann surface.

By Masatsugu Tsuji

(Received Nov. 4, 1953)

The Neumann's problem is solved usually by means of integral equations. Recently L. Myrberg¹⁾ proved simply the existence of the solution of the Neumann's problem for the inside of a unit circle, without use of integral equations. By his method, we shall prove the existence of the solution of the Neumann's problem for a domain on a closed Riemann surface, without use of integral equations.

Let F be a closed Riemann surface spread over the z-plane and D be its sub-domain, whose boundary Γ consists of a finite number of analytic Jordan curves or Jordan arcs $\Gamma = \sum_{i=0}^{n} \Gamma_{i}$, such that, if Γ_{i} , Γ_{i+1} meet at a point ζ_{i} , then they make an inner angle $\alpha_{i}\pi$ ($0 < \alpha_{i} < 2$) at ζ_{i} . Let $f(\zeta)$ be a given function on Γ , which is continuous on Γ , except at $\{\zeta_{i}\}$, where $f(\zeta)$ may be discontinuous, but is bounded on Γ , such that

$$|f(\zeta)| \leq M$$
 on Γ , (1)

and satisfies the condition:

$$\int_{\Gamma} f(\zeta) |d\zeta| = 0.$$
 (2)

Then we shall prove

THEOREM. There exists a harmonic function u(z) in D, which is continuous in \overline{D} , such that

(i)
$$|u(z)| \leq k_1 M \quad in \quad \overline{D}$$
,

where $k_1 = k_1(D)$ is a constant, which depends on D only.

¹⁾ L. Myrberg: Über die vermischte Randwertaufgabe der harmonischen Funktionen. Ann. Acad. Sci. Fenn. Series A, 103 (1951).