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On Neumann’s problem for a domain on a
closed Riemann surface.
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The Neumann’s problem is solved usually by means of integral
equations. Recently L. Myrbergl) proved simply the existence of the
solution of the Neumann’s problem for the inside of a unit circle, with-
out use of integral equations. By his method, we shall prove the
existence of the solution of the Neumann’s problem for a domain on
a closed Riemann surface, without use of integral equations.

Let $F$ be a closed Riemann surface spread over the z-plane and $D$

be its sub.domain, whose boundary $I^{7}$ consists of a finite number of
analytic Jordan curves or Jordan arcs $I^{7}=\sum_{i=0}^{n,}I_{i}^{7}$ , such that, if $\Gamma_{i},$ $\Gamma_{i+1}$

meet at a point $\zeta_{i}$ , then they make an inner angle $\alpha;\pi(0<\alpha_{i}<2)$

at $\zeta_{j}$ . Let $f(\zeta)$ be a given function on $\Gamma$ , which is continuous on $I^{7}$ ,
except at $\{\zeta_{i}\}$ , where $f(\zeta)$ may be discontinuous, but is bounded on $\Gamma$ ,
such that

$|f(\zeta)|\leqq M$ on $\Gamma$ , (1)

and satisfies the condition:

$\int_{\Gamma}f(\zeta)|d\zeta|=0$ . (2)

Then we shall prove
THEOREM. There exists a harmonic function $u(z)$ in $D$, which is

continuous in $\overline{D}$, such that

(i) $|u(z)|\leqq k_{1}M$ in $\overline{D}$ ,

where $k_{1}=k_{1}(D)$ is a constant, which depends on $D$ only.

1) L. Myrberg: \"Uber die vermischte Randwertaufgabe der harmonischen Funktionen.
Ann. Acad. Sci. Fenn. Series $A,$ $103$ (1951).


