Journal of the Mathematical Society of Japan

On Royden's theorem on a covering surface of a closed Riemann surface.

By Masatsugu TSUJI

(Received Nov. 4, 1953)

Let F be a closed Riemann surface of genus $p \ge 2$, spread over the z-plane and ϕ be its unramified covering surface. Let C_i $(i=1,2,\dots,p)$ be p disjoint ring cuts of F, such that, if we cut F along $\{C_i\}$, then F becomes a surface of planar character and let C'_i be the conjugate ring cut of C_i , such that C'_i meets C_i at a point and is disjoint to C_j, C'_j $(j=1,2,\dots,p, j \neq i)$. We assume that C_i, C'_i are rectilinear polygons and meet at a positive angle. We denote the both shores of C_i , C'_i by $C^+_i, C^-_i, C'^+_i, C'^-_i$ respectively.

We denote a surface, which is obtained from F by cutting along a certain number of C_i, C'_i by F' in general, then

$$onumber \Phi = \sum_{k=0}^{\infty} F'_k$$
 ,

where F'_k is one F'.

Let Γ_k be the boundary of F'_k , which consists of a certain number of $C_i^+, C_i^-, C'_i^+, C'_i^-$, which we denote by $\{\sigma_k^{(i)}\}_{=1, 2, \cdots, \sigma_k}^i$ so that $\Gamma_k = \sum_i \sigma_k^{(i)}$. Along $\sigma_k^{(i)}$, there connects another F'_s to F'_k .

Then Royden¹⁾ proved the following theorem.

THEOREM. The necessary and sufficient condition that Φ is of positive boundary is that there exist a contant $m_k^{(i)}$ corresponding to $\sigma_k^{(i)}$, such that if $\sigma_k^{(i)}$ belong to the boundary of another F'_s and $\sigma_k^{(i)} = \sigma_s^{(j)}$, then $m_s^{(j)} = -m_k^{(i)}$ and satisfy the following conditions:

(i) $\sum_{i} m_{0}^{(i)} \neq 0$, $\sum_{i} m_{k}^{(i)} = 0$ $(k=1, 2, \cdots)$, (ii) $\sum_{k=0}^{\infty} M_{k}^{2} < \infty$,

¹⁾ H.L. Royden: Harmonic functions on open Riemann surfaces. Trans. Amer. Math. Soc. 75 (1952).