On the regularity of homeomorphisms of E^{n}.

By Tatsuo Homma and Shin'ichi Kinoshita

(Received Feb. 16, 1953)
Introduction. Let X be a compact metric space and h a homeomorphism of X onto itself. The homeomorphism h has been called by B. v. Kerékjártó [3]1) regular at $p \in X$, if h satisfies the following condition: for each $\varepsilon<0$ there exists $\delta>0$ such that for each x with $d(t, x)<\delta$ and for each integer m

$$
d\left(h^{m}(p), h^{m}(x)\right)<\varepsilon .
$$

One of the purpose of this paper is to prove the following
Theorem 1. Let X be a compact metric space and h a homeomorphism of X onto itself. Assume that X and h have the following property: there cxist two distinct points a and b such that
(i) for each point $x \in X-b$ the sequence $\left\{h^{m}(x)\right\}$ converges to a and
(ii) for each point $x \in X^{-a}$ a the sequence $\left\{h^{-m}(x)\right\}$ converges to b, where $m=1,2,3, \cdots$.

Then h is regular at every point of X except for a and b.
As a corollary of Theorem 1 we have the following
Theorem 2. Let h be a homeomorphism of the n-dimensional sphere S^{n} onto itself satisfying the same condition as that of Theorem 1. Then h is regular at every point of S^{n} except for a and b.

Now let S^{n} be the n-dimensional sphere in the $(n+1)$-dimensional Euclidean space E^{n+1} and let P be a point of S^{n}. Let $p(x)$ be the stercographic projection of $S^{n}-P$ from P onto the n-dimensional Euclidean space E^{n} tangent at the antipode O of P, where we assume that O is the origin of E^{n}. Let h be a homeomorphism of E^{n} onto itself. Put $\bar{h}(x)=p^{-1} h p(x)$ where $x \in S^{n} \ldots P$ and put $\bar{h}(P)=P$. Then we have a homeomorphism \bar{h} of S^{n} onto itself. B. v. Kerékjártó [3] called a

[^0]
[^0]: 1) The numbers in the brackets refer to the references at the end of this paper.
