Journal of the Mathematical Society of Japan

On the regularity of homeomorphisms of E^{n} .

By Tatsuo HOMMA and Shin'ichi KINOSHITA

(Received Feb. 16, 1953)

Introduction. Let X be a compact metric space and h a homeomorphism of X onto itself. The homeomorphism h has been called by B. v. Kerékjártó [3]¹⁾ regular at $p \in X$, if h satisfies the following condition: for each $\epsilon > 0$ there exists $\delta > 0$ such that for each x with $d(p, x) < \delta$ and for each integer m

 $d(h^m(p), h^m(x)) \leq \epsilon$.

One of the purpose of this paper is to prove the following

THEOREM 1. Let X be a compact metric space and h a homeomorphism of X onto itself. Assume that X and h have the following property: there exist two distinct points a and b such that

(i) for each point $x \in X - b$ the sequence $\{h^m(x)\}$ converges to a and

(ii) for each point $x \in X$ —a the sequence $\{h^{-m}(x)\}$ converges to b, where $m=1, 2, 3, \cdots$.

Then h is regular at every point of X except for a and b.

As a corollary of Theorem 1 we have the following

THEOREM 2. Let h be a homeomorphism of the n-dimensional sphere S^n onto itself satisfying the same condition as that of Theorem 1. Then h is regular at every point of S^n except for a and b.

Now let S^n be the *n*-dimensional sphere in the (n+1)-dimensional Euclidean space E^{n+1} and let P be a point of S^n . Let p(x) be the stereographic projection of $S^n - P$ from P onto the *n*-dimensional Euclidean space E^n tangent at the antipode O of P, where we assume that O is the origin of E^n . Let h be a homeomorphism of E^n onto itself. Put $\overline{h}(x) = p^{-1}hp(x)$ where $x \in S^n - P$ and put $\overline{h}(P) = P$. Then we have a homeomorphism \overline{h} of S^n onto itself. B. v. Kerékjártó [3] called a

1) The numbers in the brackets refer to the references at the end of this paper.