Journal of the Mathematical Society of Japan Vol. 5, Nos. 3~4, November, 1953.

On Weierstrass-Stone's theorem.

By Shozo Koshi

(Received Feb. 12, 1953)

Let \mathcal{Q} be a compact Hausdorff space and $C(\mathcal{Q})$ the ring of all real-valued continuous functions on \mathcal{Q} .

We define the norm for an element f of $C(\mathcal{Q})$ as

$$||f|| = \sup_{x \in \Omega} |f(x)|,$$

then we have a Banach algebra $C(\mathcal{Q})$.

Weierstrass-Stone's theorem may be formulated as follows:

Let B be a subring in $C(\Omega)$ which has the following properties:

(1) if $x_1, x_2, x_1 \neq x_2$ are arbitrary elements of Ω , then we can find an element f in B such that $f(x_1) \neq f(x_2)$.

(2) B has the unit 1.

Then B is norm-dense in $C(\Omega)$.

In this theorem, a point of \mathcal{Q} may be considered as a linear functional on $C(\mathcal{Q})$. So, we shall consider here generally by what kind of systems of linear functionals on $C(\mathcal{Q})$ the set \mathcal{Q} in (1) can be replaced.

DEFINITION. Let $C^*(\mathcal{Q})$ be the set of all linear functionals on $C(\mathcal{Q})$. A subsystem \mathfrak{S} of $C^*(\mathcal{Q})$ is said to satisfy the condition of Weierstrass (shortly W-condition) if \mathfrak{S} satisfies the following condition:

If B is an arbitrary subring of $C(\mathcal{Q})$ which contains the unit 1, and if for any two different elements φ , ψ of \mathfrak{S} there exists an f in B such that $\varphi(f) \neq \psi(f)$, then B is norm-dense in $C(\mathcal{Q})$.

Clearly the totality of point-functionals satisfies this condition.

LEMMA 1. Let F be a linear space and φ , ψ two linear functionals on F. If $\varphi(f)=0$ always implies $\psi(f)=0$, then we can find a real number a such that $\psi(f)=a\varphi(f)$.

PROOF. Let f_0 be an element of F such that $\varphi(f_0) \neq 0$. If we can not find such an element, this lemma follows trivially.

Since $\varphi\{\varphi(f_0)f - \varphi(f)f_0\} = 0$ ($f \in F$), we have by assumption,

$$\psi\{\varphi(f_0)f-\varphi(f)f_0\}=0$$
 $(f\in F)$,

i.e.

$$\varphi(f_0) \psi(f) - \varphi(f) \psi(f_0) = 0$$
 $(f \in F)$.