# A note on Kummer extensions 

By Kenkichi Iwasawa

(Received April 20, 1953)

1. Let $k$ be an arbitrary field and $Z(k)$ the set of all integers $n \geq 1$ such that $k$ contains a primitive $n$-th root of unity. It is clear that, if $Z(k)$ contains $m$ and $n$, it also contains the least common multiple of these two integers. Therefore the set of all rational numbers with denominators in $Z(k)$ is an additive group $R(k)$ containing the group of all integers $Z$, and the quotient group $\bar{R}(k)=R(k) / Z$ is isomorphic with the multiplicative group $W(k)$ of all roots of unity in $k$.

We now take an algebraic closure $\Omega$ of $k$ and consider the subfield $K$ of $\Omega$ obtained by adjoining all $\alpha^{1 / n}$ to $k$, where $\alpha$ is an arbitrary element in $k$ and $n$ is an arbitrary integer in $Z(k) . K$ is obviously the composite of all finite Kummer extensions of $k$ contained in $\Omega$ and hence, may be called the Kummer closure of $k$ in $\Omega . K / k$ is clearly an abelian extension and its structure is independent of the choice of the algebraic closure $\Omega$ of $k$. In particular, the structure of the Galois group $G(K / k)$ of $K / k$ is an invariant of the field $k$, and we shall show in the following how we can describe it by means of groups which depend solely on the ground field $k$.
2. We shall first define a symbol ( $\sigma, \alpha, r$ ) for arbitrary $\sigma$ in $G=G(K / k), \quad \alpha \neq 0$ in $k$ and $r$ in $R(k)$. Namely, we express $r$ as a fraction $\frac{m}{n}$ with denominator $n$ in $Z(k)$ and choose an elemnt $a$ in $K$ such that $a^{n}=\alpha^{m}$. The symbol ( $\sigma, \alpha, r$ ) is then defined by

$$
(\sigma, \alpha, r)=a^{\sigma-1}
$$

It is easy to see that $(\sigma, \alpha, r)$ is an $n$-th root of unity in $k$ and is independent of the choice of the fractional expression $\frac{m}{n}$ of $r$ and, also, of the choice of $a$ in $K$ such that $a^{n}=\alpha^{m}$.

