Journal of the Mathematical Society of Japan Vol. 5, No. 2, July, 1953.

On the coefficients of multivalent functions.

By Toshio UMEZAWA

(Received Dec. 11, 1952)

1. Introduction.

It has recently been conjectured by A. W. Goodman [1] that if

(1.1)
$$f(z) = b_1 z + b_2 z^2 + \dots + b_n z^n + \dots$$

is regular and p-valent for |z| < 1, then for n > p

(1.2)
$$|b_n| \leq \sum_{k=1}^{p} \frac{2k(n+p)!}{(p+k)!(p-k)!(n-p-1)!(n^2-k^2)} |b_k|.$$

When p=1, this becomes the Bieberbach conjecture

(1.3)
$$|b_n| \leq n |b_1|, \quad n=2, 3, \cdots$$

which has been proved for some special cases and has a long history [2]. When p=2 and n=3 (1.2) becomes

$$(1.4) |b_3| \leq 5 |b_1| + 4 |b_2|$$

an inequality which has been proved valid, if f(z) is regular 2-valent in |z| < 1, starlike with respect to the origin, and in addition, if all b_i 's are real [3].

Quite recently, by A. W. Goodman and M. S. Robertson [4], the inequality (1.2) has been proved to be valid for the class of functions called typically-real of order p, i. e. for functions with real coefficients such that $\Im f(z)$ changes its sign 2p times on |z|=r for some range $0 < \rho < r < 1$.

In attempting to generalize the above results to the case where the coefficients b_n are complex, the present author was unable to obtain (1.2) for a certain class of functions to be defined in §2, but was able to prove