# On the coefficients of multivalent functions. 

By Toshio Umezawa

(Received Dec. 11, 1952)

## 1. Introduction.

It has recently been conjectured by A. W. Goodman [1] that if

$$
\begin{equation*}
f(z)=b_{1} z+b_{2} z^{2}+\cdots+b_{n} z^{n}+\cdots \tag{1.1}
\end{equation*}
$$

is regular and $p$-valent for $|z|<1$, then for $n>p$

$$
\begin{equation*}
\left|b_{n}\right| \leqq \sum_{k=1}^{p} \frac{2 k(n+p)!}{(p+k)!(p-k)!(n-p-1)!\left(n^{2}-k^{2}\right)}\left|b_{k}\right| . \tag{1.2}
\end{equation*}
$$

When $p=1$, this becomes the Bieberbach conjecture

$$
\begin{equation*}
\left|b_{n}\right| \leqq n\left|b_{1}\right|, \quad n=2,3, \cdots \tag{1.3}
\end{equation*}
$$

which has been proved for some special cases and has a long history [2]. When $p=2$ and $n=3$ (1.2) becomes

$$
\begin{equation*}
\left|b_{3}\right| \leqq 5\left|b_{1}\right|+4\left|b_{2}\right| \tag{1.4}
\end{equation*}
$$

an inequality which has been proved valid, if $f(z)$ is regular 2 -valent in $|z|<1$, starlike with respect to the origin, and in addition, if all $b_{i}$ 's are real [3].

Quite recently, by A. W. Goodman and M.S. Robertson [4], the inequality (1.2) has been proved to be valid for the class of functions called typically-real of order $p$, i.e. for functions with real coefficients
 $0<\rho<r<1$.

In attempting to generalize the above results to the case where the coefficients $b_{n}$ are complex, the present author was unable to obtain (1.2) for a certain class of functions to be defined in $\S 2$, but was able to prove

