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1. Introduction.

It has recently been conjectured by A. W. Goodman [1] that if
(1.1) $ f(z)=b_{1}z+b_{2}z^{2}+\cdots+b_{n}z^{n}+\cdots$

is regular and $P\cdot valent$ for $|z|<1$ , then for $n>p$

(1.2) $|b_{n}|\leqq\sum_{k=1}^{p}\frac{2k(n+p)}{(p+k)!(p-k)!(n-p}\frac{!}{-1)!(n^{2}-k^{2})}|b_{k}|$ .

When $p=1$ , this becomes the Bieberbach conjecture

(1.3) $|b_{n}|\leqq n|b_{1}|$ , $ n=2,3,\cdots$

which has been proved for some special cases and has a long history
[2]. When $p=2$ and $n=3(1.2)$ becomes
(1.4) $|b_{3}|\leqq 5|b_{1}|+4|b_{2}|$

an inequality which has been proved valid, if $f(z)$ is regular 2-valent
in $|z|<1$ , starlike with respect to the origin, and in addition, if all
$b_{j}s$ are real [3].

Quite recently, by A. W. Goodman and M. S. Robertson [4], the
inequality (1.2) has been proved to be valid for the class of functions
called typically-real of order $p,$ $i.e$ . for functions with real coefficients
such that $\backslash \infty_{f}f(z)$ changes its sign $2p$ times on $|z|=r$ for some range
$0<\rho<r<1$ .

In attempting to generalize the above results to the case where
the coefficients $b_{n}$ are complex, the present author was unable to
obtain (1.2) for a certain class of functions to be defined in \S 2, but
was able to prove


