Journal of the Mathematical Society of Japan Vol. 5, No. 1 April, 1953.

On a direct transcendental singularity of an inverse function of a meromorphic function.

By Masatsugu Tsuji

(Received Nov. 21, 1952)
Let Δ be an infinite domain on the z-plane, which may be infinitely multiply connected and I^{\prime} be its boundary, which consists of at most a countable number of analytic curves. We assume that I^{\prime} contains at least one curve extending to infinity. Let $w=w(z)$ be regular in Δ and on I, except at $z=\infty$, such that $|w(z)|<R$ in Δ and $|w(z)|=R$ on Γ and $w(z) \neq 0$ in Δ. Let Δ_{r} be the part of Δ, which lies in $|z|<r$. We put

$$
\begin{gather*}
S(r ; \Delta)=\frac{1}{\pi} \iint_{\Delta_{r}} \frac{\left|w^{\prime}\right|^{2}}{\left(1+|w|^{2}\right)^{2}} d x d y,(w=w(z), z=x+i y), \tag{1}\\
T(r ; \Delta)=\int_{1}^{r} S(r ; \Delta) d r . \tag{2}
\end{gather*}
$$

Now Δ_{r} consists of a finite number of connected domains. Let Δ_{r}^{0} ($r \geqq r_{0}$) be the one, which contains a fixed point z_{0} of Δ and θ_{r} be the part of $|z|=r$, which belongs to the boundary of Δ_{r}^{0}. θ_{r} consists of a finite number of $\operatorname{arcs} \theta_{r}^{i}(i=1,2, \cdots, \nu(r))$ and $r \theta_{i}(r)$ be its arc length and put $\theta(r)=\sum \theta_{i}(r) . \quad \theta(r)$ is continuous except at most a countable number of isolated points $0<r_{1}<r_{2}<\cdots<r_{\nu} \rightarrow \infty$, where $\theta\left(r_{\nu}-0\right)$ $=\theta\left(r_{\nu}\right)<\theta\left(r_{\nu}+0\right)$.

In the former paper, ${ }^{1)}$ I have proved the following theorem.
Theorem. For any $0<\alpha<1$,

$$
T(r ; \Delta) \geqq \text { const. } e^{\pi \int_{r_{0}}^{a r} \frac{a r}{r \theta(r)}}\left(r \geqq r_{0}\right)
$$

[^0]
[^0]: 1) M. Tsuji: On a regular function which is of constant absolute value on the boundary of an infinite domain. Tohoku Math. Journ. 3 (1951).
