On a direct transcendental singularity of an inverse function of a meromorphic function.

By Masatsugu Tsuji

(Received Nov. 21, 1952)

Let Δ be an infinite domain on the z-plane, which may be infinitely multiply connected and I' be its boundary, which consists of at most a countable number of analytic curves. We assume that I' contains at least one curve extending to infinity. Let w=w(z) be regular in Δ and on I', except at $z=\infty$, such that |w(z)| < R in Δ and |w(z)|=R on Γ and $w(z) \neq 0$ in Δ . Let Δ_r be the part of Δ , which lies in |z| < r. We put

$$S(r;\Delta) = \frac{1}{\pi} \iint_{\Delta_r} \frac{|w'|^2}{(1+|w|^2)^2} dxdy, \ (w=w(z), \ z=x+iy), \ \ (1)$$

$$T(r; \Delta) = \int_{1}^{r} \frac{S(r; \Delta)}{r} dr. \qquad (2)$$

Now Δ_r consists of a finite number of connected domains. Let Δ_r^0 $(r \ge r_0)$ be the one, which contains a fixed point z_0 of Δ and θ_r be the part of |z|=r, which belongs to the boundary of Δ_r^0 . θ_r consists of a finite number of arcs θ_r^i $(i=1,2,\cdots,\nu(r))$ and $r\theta_i(r)$ be its arc length and put $\theta(r)=\sum \theta_i(r)$. $\theta(r)$ is continuous except at most a countable number of isolated points $0 < r_1 < r_2 < \cdots < r_{\nu} \to \infty$, where $\theta(r_{\nu}-0) = \theta(r_{\nu}) < \theta(r_{\nu}+0)$.

In the former paper, 10 I have proved the following theorem.

THEOREM. For any $0 < \alpha < 1$,

$$T(r; \Delta) \ge \text{const. } e^{\pi \int_{r_0}^{\alpha r} \frac{dr}{r\theta(r)}} (r \ge r_0).$$

¹⁾ M. Tsuji: On a regular function which is of constant absolute value on the boundary of an infinite domain. Tohoku Math. Journ. 3 (1951).