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Note on Betti numbers of Riemannian
manifolds I.
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In this paper, we give some applications of a theorem of Bochner–
Lichnerowicz on the Betti numbers of a Riemannian manifold. We
consider a Riemannian manifold $R_{n}$ whose fundamental tensor $g_{ij}$ is
positive definite and assume that $R_{n}$ is compact and orientable.

THEOREM I. $(BocHNER\prime LlCHNEROWIcz)$

In $R_{n}$ , if the,quadratic form

(1) $(\frac{p-1}{2}R_{ijkl}+R_{ik^{(1_{J}\iota}}.)f^{ij}f_{kl}$ $(f^{ij}=-f^{ji})$

is everywhere positive semi-definite, then, for any harmonic tensor
$X_{i(1)\cdots i(p)}$ of degree $p$, it holds that

$X_{it1)\cdots i(p),\gamma}=0$ ,
and hence we have

$B_{p}\leqq\left(\begin{array}{l}n\\p\end{array}\right)$

where $B_{p}$ denotes the p-th Betli number and $p\geqq 2$ .
When $p=1$ , the quadratic form (1) can be replaced by

(2) $R_{ij}f^{i}f^{j}$ ,

and if this form is everywhere positive semi-definite, then the covanant
derivative of any harmonic vector vanishes, and hence we have

$B_{1}\leqq n$ .
If the quadratic form (1) or (2) is everywhere positive definite, then

the harmonic vector or tensor should be identically zero, and hence we
have

$B_{p}=0$ or $B_{1}=0$ .


