Note on Betti numbers of Riemannian manifolds I.

By Yasuro Tomonaga.

(Received Nov. 25, 1952)

In this paper, we give some applications of a theorem of Bochner—Lichnerowicz on the Betti numbers of a Riemannian manifold. We consider a Riemannian manifold R_n whose fundamental tensor g_{ij} is positive definite and assume that R_n is compact and orientable.

THEOREM I. (BOCHNER-LICHNEROWICZ)

In R_n , if the quadratic form

(1)
$$\left(\frac{p-1}{2}R_{ijkl}+R_{ik}g_{jl}\right)f^{ij}f_{kl} \quad (f^{ij}=-f^{ji})$$

is everywhere positive semi-definite, then, for any harmonic tensor $X_{i(1)\cdots i(p)}$ of degree p, it holds that

$$X_{i(1)\cdots i(p);r}=0$$
,

and hence we have

$$B_{p} \leq \binom{n}{p}$$

where B_p denotes the p-th Betti number and $p \ge 2$. When p=1, the quadratic form (1) can be replaced by

$$(2) R_{ij}f^if^j,$$

and if this form is everywhere positive semi-definite, then the covariant derivative of any harmonic vector vanishes, and hence we have

$$B_1 \leq n$$
.

If the quadratic form (1) or (2) is everywhere positive definite, then the harmonic vector or tensor should be identically zero, and hence we have

$$B_{p}=0 \ or \ B_{1}=0$$
.