Generalized l^{p} spaces and the Schur property.

By I. Halperin and H. Nakano

(Received Nov. 12, 1952)
1.-The following situation (essentially) was considered by H. Nakano [3]. This problem was considered by W. Orlicz [5] in a restricted form. Let J be a collection, not necessarily countable, of marks α. For given J-sequences $p=\{p(\alpha)\}, w=\{w(\alpha)\}$ with $p(\alpha) \geq 1$ and $w(\alpha)>0$ for all α, let $l=l(p, w)$ denote the space of all real or complex valued J-sequences $x=\{x(\alpha)\}$ for which $\|x\|$ is finite; here, by definition,
(1.1) $\|x\|=\inf \eta$ for all $\eta>0$ with $\sum w(\alpha)\left|\frac{x(\alpha)}{\eta}\right|^{p(\alpha)} \leqq 1$ the symbol \sum indicating that the non-zero addends are denumerable and have an absolutely convergent sum in the usual sense (if there are no such η then $\|x\|$ is defined to be ∞). The notation $l(p, w)$ may be replaced by $l(p)$ if $w(\alpha)=1$ for all α, and by l_{p} if, in addition, $p(\alpha)=p$ (a constant) for all α.

If R, S are two collections of J-sequences, $R \cong S$ shall mean that numbers $m(\alpha)$ exist such that the relations $y(\alpha)=m(\alpha) x(\alpha)$ set up a $(1,1)$ correspondence between all x in R and all y in S.

A Banach space is said to have the Schur property if every weakly convergent sequence of its elements is necessarily convergent in norm (as shown by J. Schur [4], l^{1}, with J the set of all positive integers, has this property).
2.-The arguments used in [3] show:
(I): Every $l(p, w)$ is a Banach (i. e., linear, normed and complete) space. (II): $l\left(p, w_{1}\right) \cong l\left(q, w_{2}\right)$ if and only if
(2.1) $\sum \theta^{\frac{p(\alpha)(\alpha)-q(\alpha)}{[p(\alpha)]}}<\infty$ for some $0<\theta<1$, the sum to be taken over all α for which $p(\alpha) \neq q(\alpha)$.
(III): $l(p, w)$ has the Schur property if
(2.2) for every $\varepsilon>0$ the α for which $p(\alpha)>1+\varepsilon$ are finite in number.
(IV) : There are $l(p, w)$ with the Schur property for which $l(p, w) \cong l^{1}$ is false.

