Generalized l^p spaces and the Schur property.

By I. HALPERIN and H. NAKANO

(Received Nov. 12, 1952)

1.—The following situation (essentially) was considered by H. Nakano [3]. This problem was considered by W. Orlicz [5] in a restricted form. Let J be a collection, not necessarily countable, of marks α . For given J-sequences $p = \{p(\alpha)\}$, $w = \{w(\alpha)\}$ with $p(\alpha) \ge 1$ and $w(\alpha) > 0$ for all α , let l = l(p, w) denote the space of all real or complex valued J-sequences $x = \{x(\alpha)\}$ for which ||x|| is finite; here, by definition,

(1.1) $||x|| = \inf \eta$ for all $\eta > 0$ with $\sum w(\alpha) \left| \frac{x(\alpha)}{\eta} \right|^{p(\alpha)} \le 1$ the symbol \sum indicating that the non-zero addends are denumerable and have an absolutely convergent sum in the usual sense (if there are no such η then ||x|| is defined to be ∞). The notation l(p, w) may be replaced by l(p) if $w(\alpha)=1$ for all α , and by l_p if, in addition, $p(\alpha)=p$ (a constant) for all α .

If R, S are two collections of J-sequences, $R \cong S$ shall mean that numbers $m(\alpha)$ exist such that the relations $y(\alpha) = m(\alpha) x(\alpha)$ set up a (1,1) correspondence between all x in R and all y in S.

A Banach space is said to have the Schur property if every weakly convergent sequence of its elements is necessarily convergent in norm (as shown by J. Schur [4], l^1 , with J the set of all positive integers, has this property).

- 2.—The arguments used in [3] show:
- (I): Every l(p, w) is a Banach (i. e., linear, normed and complete) space.
- (II): $l(p, w_1) \cong l(q, w_2)$ if and only if
- (2.1) $\sum \theta^{\frac{p(\alpha)}{\lfloor p(\alpha) q(\alpha) \rfloor}} < \infty$ for some $0 < \theta < 1$, the sum to be taken over all α for which $p(\alpha) \neq q(\alpha)$.
- (III): l(p, w) has the Schur property if
- (2.2) for every $\varepsilon > 0$ the α for which $p(\alpha) > 1 + \varepsilon$ are finite in number.
- (IV): There are l(p, w) with the Schur property for which $l(p, w) \cong l^1$ is false.