## Concave modulars.

By Hidegoro NAKANO.

(Received Nov. 12, 1952)

We have defined and discussed modulars on semi-ordered linear space in a book<sup>1)</sup>. Let R be a semi-ordered linear space and universally continuous, that is, for every system of positive elements  $a_{\lambda} \in R$   $(\lambda \in \Lambda)$  there exists  $\bigcap_{\lambda \in \Lambda} a_{\lambda}$ . A functional m(x)  $(x \in R)$  is called a modular on R, if 1)  $0 \le m(x) \le +\infty$  for every  $x \in R$ , 2)  $m(\xi a) = 0$  for every  $\xi \ge 0$  implies a = 0, 3) for any  $a \in R$  we can find  $\alpha > 0$  such that  $m(\alpha a) < +\infty$ , 4) for each  $x \in R$ ,  $m(\xi x)$  is a convex function of  $\xi$ :  $m\left(\frac{\alpha+\beta}{2}x\right) \le \frac{1}{2} \{m(\alpha x) + m(\beta x)\}$ , 5)  $|x| \le |y|$  implies  $m(x) \le m(y)$ , 6)  $x \cap y = 0$  implies m(x+y) = m(x) + m(y), 7)  $0 \le x_{\lambda} \uparrow_{\lambda \in \Lambda} x_{0}$  implies  $m(x_{0}) = \sup_{\lambda \in \Lambda} m(x_{\lambda})$ .

In this paper we shall consider a functional m(x)  $(x \in R)$  which satisfies instead of 4) the condition:  $m(\xi x)$  is a concave function of  $\xi \ge 0$ , i.e., we define a concave modular m(x)  $(x \in R)$  by the postulates: 1)  $0 \le m(x) < +\infty$ , 2) m(x) = 0 implies x = 0, 3)  $|x| \le |y|$  implies  $m(x) \le m(y)$ , 4)  $x \cap y = 0$  implies m(x + y) = m(x) + m(y), 5)  $m(\xi x)$  is a concave function of  $\xi \ge 0$ :

$$m\left(\frac{\lambda+\mu}{2}x\right) \geq \frac{1}{2}\left\{m(\lambda x)+m(\mu x)\right\}$$
 for  $\lambda, \mu \geq 0$ ,

6)  $\lim_{\xi \to 0} m(\xi x) = 0$ , 7)  $0 \le x_{\nu} \uparrow_{\nu=1}^{\infty}$ ,  $\sup_{\nu \ge 1} m(x_{\nu}) < +\infty$  implies the existence of an element  $x_0$  for which  $x_{\nu} \uparrow_{\nu=1}^{\infty} x_0$  and  $m(x_0) = \lim_{\nu \to \infty} m(x_{\nu})$ .

Concerning the concave modulars m(x) on R, we can prove

$$m(x+y) \le m(x) + m(y)$$
 for every  $x, y \in R$ .

Thus, every concave modular m(x) on R is a quasi-norm by which R is a Fréchet space.

For a concave modular m(x) on R, we can prove easily