Journal of the Mathematical Society of Japan Vol. 5, No. 1, April, 1953.

On Killing vector fields in a Kaehlerian space.

By Kentaro YANO

(Received Dec. 19, 1952)

§0. Introduction.

S. Bochner $[1, 2]^{i}$ has shown a remarkable contrast between harmonic vectors and Killing vectors in a real compact Riemannian space by proving the following theorems:

THEOREM I. In a compact Riemannian space, there exists no harmonic (Killing) vector field, other than zero vector, which satisfies the relation

$$R_{jk}\xi^{j}\xi^{k} \geq 0, \qquad (R_{jk}\xi^{j}\xi^{k} \leq 0)$$

unless we have $\xi_{j;k}=0$. If the space has positive (negative) Ricci curvature throughout, then the exceptional case cannot arise.

THEOREM II. If, in a compact Riemannian space, there exist a harmonic vector field ξ_i and a Killing vector field η^i , then we have

 $\xi_i \eta^i = \text{constant.}$

S. Bochner has shown also a remarkable contrast between covariant analytic vectors and contravariant analytic vectors in a compact Kaehlerian space by proving the following theorems:

THEOREM III. In a compact Kaehlerian space, there exists no self-adjoint covariant (contravariant) vector field, other than zero vector, the components of which are analytic functions of coordinates and which satisfies the relation

$$R_{\alpha\bar{\beta}}\xi^{\alpha}\xi^{\bar{\beta}} \geq 0, \qquad (R_{\alpha\bar{\beta}}\xi^{\alpha}\xi^{\bar{\beta}} \leq 0)$$

unless the vector field has vanishing covariant derivative. If $R_{\alpha\bar{\beta}}\xi^{\alpha}\xi^{\bar{\beta}}$ is positive (negative) definite throughout, then the exceptional case cannot arise.

¹⁾ See the Bibliography at the end of the paper.