Principal ruled surfaces of a rectilinear congruence.

By Kusuo Takeda

(Recieved July 20, 1952)

Introduction.

Let $p^{i j}$ be the Plücker coordinates of a line p in projective three dimensional space \boldsymbol{R}_{3}. If p ($p^{11}, p^{2,}, p^{13}, p^{12}, p^{13}, p^{23}$) is a function of two parameters u^{1} and u^{2}, the line p describes a rectilinear congruence K when u^{1} and u^{2} vary. Now put ${ }^{1)}$

$$
p^{i}=\frac{\partial p}{\partial u^{i}}(i=1,2),--\left(\left(p_{i} p_{j}\right)\right)=H_{i j}(i, j=1,2) .
$$

If the determinant determined by the elements $H_{i j}(i, j=1,2)$ does not vanish identically, the congruence K has two focal surfaces S_{0} and S_{1}. We restrict ourselves in this case.

Let us consider the image of a line p in the projective five dimensional space \boldsymbol{R}_{5}, the plane \boldsymbol{S}_{2} determined by the three points p, p_{1} and p_{2} is the tangential plane of the image V of K at p, and the plane \boldsymbol{S}_{4} determined by \boldsymbol{S}_{2} and its conjugate $\boldsymbol{S}_{2}^{\prime}$ with respect to the quadric of Plücker Q_{4} is the polar plane of \boldsymbol{Q}_{4} at p, that is, the tangential plane of Q_{4} at p. Let p_{5} be a point which does not lie in this tangential hyperplane S_{4}, the plane $p p_{1} p_{2} p_{5}$ has no common point with the conjugate $\boldsymbol{S}_{1}^{\prime}$ with respect to $\boldsymbol{Q}_{4}, \boldsymbol{S}_{1}^{\prime}$ intersects with \boldsymbol{Q}_{4} at two different points p_{3} and p_{4}. Then p_{3} and p_{4} lie on the tangential hyperplane $p p_{1} p_{2} p_{3} p_{4}$, and the lines $p p_{k}, p_{k} p_{5}(k=3,4)$ are not conjugate to each other. Moreover, to determine uniquely the point p_{5}, we select p_{5} as the intersection of Q_{4} and the line joining the point p and $\frac{1}{2} H^{\sigma \tau} \frac{\bar{\partial}^{2} p}{\partial u^{\sigma} \partial u^{\tau}}(\bar{d}$ denotes absolute differentiation). Then we have the fundamental equations for the given congruence K as follows ${ }^{2}$:

