Journal of the Mathematical Society of Japan Vol. 4, Nos. 3~4, December, 1952.

Principal ruled surfaces of a rectilinear congruence.

By Kusuo Takeda

(Recieved July 20, 1952)

Introduction.

Let p^{ij} be the Plücker coordinates of a line p in projective three dimensional space R_3 . If p (p^{01} , p^{02} , p^{03} , p^{12} , p^{13} , p^{23}) is a function of two parameters u^1 and u^2 , the line p describes a rectilinear congruence K when u^1 and u^2 vary. Now put¹⁾

$$p^{i} = \frac{\partial p}{\partial u^{i}}(i=1,2), -((p_{i},p_{j})) = H_{ij} (i,j=1,2).$$

If the determinant determined by the elements H_{ij} (i, j=1, 2) does not vanish identically, the congruence K has two focal surfaces S_0 and S_1 . We restrict ourselves in this case.

Let us consider the image of a line p in the projective five dimensional space R_5 , the plane S_2 determined by the three points p, p_1 and p_2 is the tangential plane of the image V of K at p, and the plane S_4 determined by S_2 and its conjugate S'_2 with respect to the quadric of Plücker Q_4 is the polar plane of Q_4 at p, that is, the tangential plane of Q_4 at p. Let p_5 be a point which does not lie in this tangential hyperplane S_4 , the plane $pp_1p_2p_5$ has no common point with the conjugate S'_1 with respect to Q_4 , S'_1 intersects with Q_4 at two different points p_3 and p_4 . Then p_3 and p_4 lie on the tangential hyperplane $pp_1p_2p_3p_4$, and the lines pp_k , p_kp_5 (k=3, 4) are not conjugate to each other. Moreover, to determine uniquely the point p_5 , we select p_5 as the intersection of Q_4 and the line joining the point p and $\frac{1}{2}H^{\sigma\tau}\frac{\overline{\partial}^2 p}{\partial u^{\sigma}\partial u^{\tau}}$ (\overline{d} denotes absolute differentiation). Then we have the fundamental equations for the given congruence K as fol $lows^{2}$;