Journal of the Mathematical Society of Japan Vol. 4, Nos. 3~4, December, 1952.

On the multivalency of analytic functions.

By Toshio UMEZAWA

(Received January 10, 1952) (Revised February 18, 1952)

Noshiro's theorems¹⁾ (generalizations of Dieudonné's theorem²⁾) concerning the univalency of regular functions were extended to the case of *p*-valence by E. Sakai³⁾. In the present paper we are going to generalize some of them to meromorphic functions which are defined in a multiply-connected domain. By accomplishing this task we shall also be able to extend Z. Nehari's results⁴⁾ and to make them more sharp.

LEMMA 1. Let $\varphi(z)$ be regular in an n-ply connected domain D and let $\varphi(z) \subset T^{5}$ in D, where T is a given connected domain. Let us denote by u=g(t) an arbitrary branch of a function mapping T conformally on |u| < 1 and suppose that $g(\varphi(z))$ is single-valued in D, and put

(1)
$$\frac{1-|g(\alpha)|^2}{|g'(\alpha)|} \equiv \mathcal{Q}(\alpha, T) \qquad (\alpha \in T)^{6}$$

Then

(2)
$$|\varphi'(z)| \leq 2\pi k(z,z) \mathcal{Q}(\varphi(z),T)$$
 $(z \in D),$

where $k(z,\xi)$ denotes the Szegö kernel function⁷⁾ of D.

PROOF. In order that the integration be permissible we assume that the boundary I' of D consists of smooth curves and that $\varphi(\zeta)$ is continuous on I'; but once the result is obtained, both assumptions can easily be disposed of. Indeed, if D is not smoothly bounded, we may approximate D by a sequence of domains D_n which satisfy $D_n \subset D, D_n$ $\subset D_{n+1}, \lim_{n \to \infty} D_n = D$ and whose boundaries Γ_n are smooth. If we replace D by D_n , the additional assumption under which we prove Lemma 1 are satisfied. The general result then follows by letting $n \to \infty$ and observing that the Szegö kernel function k(z, z) is a continuous domain function.