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Noshiro’s theoremsl) (generalizations of Dieudonn\’e’s $theorem^{2)}$ ) con-
cerning the univalency of regular functions were extended to the case
of $p$-valence by E. Sakai3). In the present paper we are going to gene-
ralize some of them to meromorphic functions which are defined in a
multiply-connected domain. By accomplishing this task we shall also
be able to extend Z. Nehari’s results4) and to make them more sharp.

LEMMA 1. Let $\varphi(z)$ be regular in an n-ply connected domain
$D$ and let $\varphi(z)\subset T^{5)}$ in $D$, where $T$ is a given connected domain.
Let us denote by $u=g(t)$ an arbitrary branch of a function mapping
$T$ conformally on $|u|<1$ and suppose that $g(\varphi(z))$ is single-valued
in $D$, and put

(1) $\frac{1-|g(\alpha)|^{2}}{|g^{t}(\alpha)|}\equiv\Omega(\alpha, T)$ $(\alpha eT)^{6)}$.

Then

(2) $|\varphi^{\prime}(z)|\leqq 2\pi k(z, z)\Omega(\varphi(z), T)$ $(z\in D)$ ,

where $k(z, \xi)$ denotes the Szeg\"o kernel function7) of $D$ .
PROOF. In order that the integration be permissible we assume

that the boundary $I^{\cdot}$ of $D$ consists of smooth curves and that $\varphi(\zeta)$ is
continuous on $I^{\gamma}$ ; but once the result is obtained, both assumptions
can easily be disposed of. Indeed, if $D$ is not smoothly bounded, we may
approximate $D$ by a sequence of domains $D_{n}$ which satisfy $D_{n}\subset D,$ $D_{n}$

$\subset D_{n+1},\lim_{n\rightarrow\infty}D_{n}=D$ and whose boundaries $\Gamma_{n}$ are smooth. If we replace

$D$ by $D_{n}$ , the $addition^{1}a1$ assumption under which we prove Lemma 1
are satisfied. The general result then follows by letting $ n\rightarrow\infty$ and
observing that the Szego kernel function $k(z, z)$ is a continuous
domain function.


