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On the change of variables in the
multiple integrals.
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(Received July 25, 1952)

The well-known formula on the change of variables in the multi-
ple integrals

$(*)$ $\int_{f(D)^{t}}r0’$) $dy=\int_{D}g(f(x))abs|\frac{\partial f}{\partial x}|dx$

has been proved by H. Rademacher and M. Tsuji under very general
assumptions. They have shown that the functions $f$ satisfying certain
conditions are totally differentiable almost everywhere and consequently

the Jacobian $\left|\begin{array}{lll} & & \partial f\\ & & \partial X\end{array}\right|$ can be defined almost everywhere. They have pro-

ved further that the above formula $(*)$ holds for integrable functions
$g$, and $f$ satisfying these conditions. We shall give in the following
lines another proof of the last fact. Namely we suppose $f$ as $a.e$.
totally differentiable, $g$ as integrable and show the validity of $(*)$ . (For
the exact formulation see below.) We treat further the case where $f$

is not necessarily univalent.
Throughout this paper, we shall concern ourselves with subsets

and mappings of the euclidean n-space $E^{n}$ . $f$ represents always a
mapping defined on a certain subset of $E^{n}$ . Letters like $x,$ $y,$ $a,$ $b$

represent points of $E^{n}$ . $||x-y||$ denotes the distance between $x$ and $y$ .

\S 1. Preliminaries.

DEFINITION 1. A mapping $f(x)$ defined on a bounded domain
$D(\subset E^{n})$ is called an $\mathfrak{A}$ -function on $D$, if it satisfies the followzng three
conditions.

$(\mathfrak{A}_{1})f$ maps $D$ homeomorphically onto $f(D)$ .
$(?1_{2})$ If $\mu(E)=0(E\subset D)$ , then $\mu(f(E))=0$ .
$(\mathfrak{A}_{3})$ $f(x)$ is totally differentiable almost everywhere.


