On the change of variables in the multiple integrals.

By Setsuya Seki

(Received July 25, 1952)

The well-known formula on the change of variables in the multiple integrals

(*)
$$\int_{f(D)} g(y) dy = \int_{D} g(f(x)) abs \left| \frac{\partial f}{\partial x} \right| dx$$

has been proved by H. Rademacher and M. Tsuji under very general assumptions. They have shown that the functions f satisfying certain conditions are totally differentiable almost everywhere and consequently the Jacobian $\left|\frac{\partial f}{\partial x}\right|$ can be defined almost everywhere. They have proved further that the above formula (*) holds for integrable functions g, and f satisfying these conditions. We shall give in the following lines another proof of the last fact. Namely we suppose f as a.e. totally differentiable, g as integrable and show the validity of (*). (For the exact formulation see below.) We treat further the case where f is not necessarily univalent.

Throughout this paper, we shall concern ourselves with subsets and mappings of the euclidean n-space E^n . f represents always a mapping defined on a certain subset of E^n . Letters like x, y, a, b represent points of E^n . ||x-y|| denotes the distance between x and y.

§ 1. Preliminaries.

DEFINITION 1. A mapping f(x) defined on a bounded domain $D(\subset E^n)$ is called an \mathfrak{A} -function on D, if it satisfies the following three conditions.

- (\mathfrak{A}_1) f maps D homeomorphically onto f(D).
- (\mathfrak{A}_2) If $\mu(E)=0$ $(E\subseteq D)$, then $\mu(f(E))=0$.
- (\mathfrak{N}_3) f(x) is totally differentiable almost everywhere.