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On the zeros of integral functions
of integral order.

By Kihachiro ARIMA

(Received Dec. 26, 1949)

1. Let $f(z)$ be an integral function of integral order $\rho>0$ , and
$M(r)$ be its maximum modulus on the circumference $|z|=r$ . Further,
let $n(r, \alpha)$ denote the number of zeros of $ f(z)-\alpha$ for any complex $\alpha$ .
In this note we shall prove the following two theorems:

THEOREM 1. If $\log_{2}M(r)/\log r$ has the limit $\rho$ for $ r\rightarrow\infty$ , then
$\log n(r, \alpha)/\log r$ has the same limit for $ r\rightarrow\infty$ , except possibly for some
values of $\alpha$ belonging to a set of inner logarithmic capacity zero.

THEOREM 2. If $\log M(r)/r^{p}$ is bounded from zero and infinity, $so$

is $n(r, \alpha)/r^{\rho}$ , except possibly for some values of $\alpha$ belonging to a set of
inner capacity zero.

It is known that these theorems hold with an exceptional set
whose projection on any straight-line is of zero content1).

Our proof is based on the following well-known fact:
LEMMA 1. For an integral function of non-integral order, above

two theorems hold for any $\alpha$ without exception1).
2. Let $f(z)$ be meromorphic in $|z|<+\infty$ and $s$ be a positive

integer. We put

$F_{\alpha}(W)=_{k=0}^{s-1}L1[f(zt^{k})-\alpha]$ , $W=z^{s}$ and $R=r^{s}$ ,

where $t$ is a primitive s.th root of 1, so that $F_{\alpha}(W)$ is meromorphic
in $|W|<+\infty$ . Then,

LEMMA 2. There $h0lds$

$T(R, F_{\alpha})\sim sT(r,f)$

except possibly for some values of $\alpha$ belgnging to a set of inner capacity
zero.


