Journal of the Mathematical Society of Japan Vol. 4, No. 1, July, 1952.

On the zeros of integral functions of integral order.

By Kihachiro ARIMA

(Received Dec. 26, 1949)

1. Let f(z) be an integral function of integral order $\rho > 0$, and M(r) be its maximum modulus on the circumference |z|=r. Further, let $n(r, \alpha)$ denote the number of zeros of $f(z)-\alpha$ for any complex α . In this note we shall prove the following two theorems:

THEOREM 1. If $\log_2 M(r)/\log r$ has the limit ρ for $r \to \infty$, then $\log n(r, \alpha)/\log r$ has the same limit for $r \to \infty$, except possibly for some values of α belonging to a set of inner logarithmic capacity zero.

THEOREM 2. If $\log M(r)/r^{\circ}$ is bounded from zero and infinity, so is $n(r, \alpha)/r^{\circ}$, except possibly for some values of α belonging to a set of inner capacity zero.

It is known that these theorems hold with an exceptional set whose projection on any straight-line is of zero content¹⁾.

Our proof is based on the following well-known fact:

LEMMA 1. For an integral function of non-integral order, above two theorems hold for any α without exception¹⁾.

2. Let f(z) be meromorphic in $|z| < +\infty$ and s be a positive integer. We put

$$F_{\alpha}(W) = \prod_{k=0}^{s-1} \left[f(zt^k) - \alpha \right], \quad W = z^s \text{ and } R = r^s,$$

where t is a primitive s-th root of 1, so that $F_{\alpha}(W)$ is meromorphic in $|W| < +\infty$. Then,

LEMMA 2. There holds

$$T(R, F_{\alpha}) \sim sT(r, f)$$

except possibly for some values of α belonging to a set of inner capacity zero.