Journal of the Mathematical Society of Japan Vol. 4, No. 1, July, 1952.

On maximum modulus of integral functions.

By Kihachiro ARIMA

(Received Dec. 26, 1949)

Let D be a region on the z-plane, which lies in the disc |z| < R $(0 < R \leq +\infty)$, and whose boundary I' lying in |z| < R consists of a finite or infinite number of analytic curves clustering nowhere in |z| < R. For any 0 < r < R, we denote by D_r the part of D lying in |z| < r. Let $A_k(r)$ $(k=1, \dots, n(r))$ be the arcs of |z|=r < R contained in D, and $r \cdot \theta_k(r)$ be their lengths.

We define a function $\theta(r)$ in 0 < r < R as follows: if |z|=r is contained wholly in *D*, then $\theta(r)=+\infty$, and, otherwise, $\theta(r)=\max_{k}\theta_{k}(r)$.

Using Carleman's method¹⁾, we shall first prove

THEOREM 1. Suppose that $\theta(r) > 0$ for $0 < r_0 < r < R$, and let u(z) be a harmonic function in D, which is > 0 in D and = 0 on Γ . We put

$$m(r) = \frac{1}{2\pi} \sum_{k} \int_{A_{k}(r)} \left[u(re^{i\varphi}) \right]^{2} d\varphi \qquad (0 < r < R)$$

and $D(r) = \iint_{D_r} \left[\left(\frac{\partial u}{\partial \log r} \right)^2 + \left(\frac{\partial u}{\partial \varphi} \right)^2 \right] d \log r \, d\varphi$.

Then, for any $0 < r_0 < r < R$,

$$D(r) \ge D(r_0) \exp \int_{r_0}^r \frac{2\pi}{r\theta(r)} dr$$

and

Let f(z) be a regular analytic function in $|z| < R \leq +\infty$. While applying Theorem 1 to $u(z) = \log |f(z)|$, we shall obtain some theorems on the modulus of f(z).

 $m(r)-m(r_0) \geq \frac{1}{\pi} D(r_0) \cdot \int_{r_0}^r \frac{dt}{t} \left[\exp \int_{r_0}^t \frac{2\pi}{s\theta(s)} ds \right].$

PROOF OF THEOREM 1. Since u=0 on *I*', we have, by application of Green's formula,