On maximum modulus of integral functions.

By Kihachiro Arima

(Received Dec. 26, 1949)
Let D be a region on the z-plane, which lies in the disc $|z|<R$ $(0<R \leqq+\infty)$, and whose boundary I^{\prime} lying in $|z|<R$ consists of a finite or infinite number of analytic curves clustering nowhere in $|z|<R$. For any $0<r<R$, we denote by D_{r} the part of D lying in $|z|<r$. Let $A_{k}(r)(k=1, \cdots, n(r))$ be the arcs of $|z|=r<R$ contained in D, and $r \cdot \theta_{k}(r)$ be their lengths.

We define a function $\theta(r)$ in $0<r<R$ as follows: if $|z|=r$ is contained wholly in D, then $\theta(r)=+\infty$, and, otherwise, $\theta(r)=\max _{k} \theta_{k}(r)$.

Using Carleman's method ${ }^{1}$, we shall first prove
Theorem 1. Suppose that $\theta(r)>0$ for $0<r_{0}<r<R$, and let $u(z)$ be a harmonic function in D, which is >0 in D and $=0$ on Γ. We put

$$
m(r)=\frac{1}{2 \pi} \sum_{k} \int_{\left.A_{k^{\prime}}\right)}\left[u\left(r e^{i \varphi}\right)\right]^{2} d \varphi \quad(0<r<R)
$$

and

$$
D(r)=\iint_{D_{r}}\left[\binom{\partial u}{\partial \log r}^{2}+\left(\frac{\partial u}{\partial \varphi}\right)^{2}\right] d \log r d \varphi .
$$

Then, for any $0<r_{0}<r<R$,

$$
D(r) \geqq D\left(r_{0}\right) \exp . \int_{r_{0}}^{r} \frac{2 \pi}{r \theta(r)} d r
$$

and

$$
m(r)-m\left(r_{0}\right) \geq \frac{1}{\pi} D\left(r_{0}\right) \cdot \int_{r_{0}}^{r} \frac{d t}{t}\left[\exp \cdot \int_{r_{0}}^{t} \frac{2 \pi}{s \theta(s)} d s\right] .
$$

Let $f(z)$ be a regular analytic function in $|z|<R \leqq+\infty$. While applying Theorem 1 to $u(z)=\log ^{+}|f(z)|$, we shall obtain some theorems on the modulus of $f(z)$.

Proof of Theorem 1. Since $u=0$ on I, we have, by application of Green's formula,

