Journal of the Mathematical Society of Japan Vol. 4, No. 1, July, 1952.

A remark on the prolongation of Riemann surfaces of finite genus.

By Akira MORI

(Received April 27, 1951)

Let F be an abstract Riemann surface. If there exists no onevalued, regular analytic and non-constant function on F such that its Dirichlet integral taken over F is finite, we shall say that F is a surface of class $N_{\mathfrak{D}}$ (F has "einen hebbaren Rand" in Sario's terminology¹⁾).

If F is of finite genus p, we can map F conformally onto a part \overline{F} of a closed Riemann surface F^* of the same genus². Then, Nevanlinna stated the following conjecture³:

THEOREM. The prolongation of a Riemann surface F of finite genus p onto a closed Riemann surface F^* is unique, if and only if F is a surface of class N_{D} .

The "uniqueness" means: if F is mapped conformally onto a part \overline{F} of F^* and a part \overline{F}_1 of F_1^* respectively, then the analytic function which maps \overline{F} onto \overline{F}_1 maps necessarily F^* onto F_1^* .

This conjecture was proved by Ahlfors and Beurling⁴⁾ for the case p=0: A plane region Ω is of class N_{D} if and only if every univalent (schlicht) function in Ω is linear. In this note we shall show that the conjecture for an arbitrary p can be easily proved by means of this Ahlfors-Beurling's theorem.

Let E be a bounded closed set of points on the complex z-plane. If any one-valued regular analytic function in a neighbourhood U-E of E with finite Dirichlet integral taken over U-E is regular also on E, we shall say, for convenience' sake, that E is a *null-set of class* N_{\odot}^{5} .

We cut F along a non-decomposing system of p analytic loop cuts on F having no points in common with each others, and map the resulting surface of planar character (schlichtartig) conformally onto a domain D on the z-plane, which is bounded by 2p closed analytic curves C_i , C'_i $(i=1, \dots, p)$ and a bounded closed set of points E, so