A proof of a transformation formula in the theory of partitions.

By Kanesiroo Iseki

(Received June 8, 1951)
Let us denote by $p(n)$ the number of unrestricted partitions of a positive integer n. Then we have

$$
f(x)=1+\sum_{n=1}^{\infty} p(n) x^{n}=\prod_{n=1}^{\infty} \frac{1}{1-x^{n}},
$$

where $f(x)$ is defined and regular for $|x|<1$. Now this function $f(x)$ is known to satisfy a remarkable transformation formula (see Rademacher [3]):

$$
\begin{equation*}
f\left(e^{\frac{2 \pi i h}{k}-\frac{2 \pi z}{k}}\right)=\omega_{h, k} \sqrt{z} e^{\frac{\pi}{12 k z}-\frac{\pi z}{12 k}} f\left(e^{\frac{2 \pi i H}{k}-\frac{2 \pi}{k z}}\right), \tag{1}
\end{equation*}
$$

where h, k and H are positive integers such that

$$
(h, k)=1, \quad h H \equiv-1(\bmod k),
$$

and

$$
\omega_{h, k}=\exp \left(\pi i \sum_{m=1}^{k-1} \frac{m}{k}\left(\frac{h m}{k}-\left[\frac{h m}{k}\right]-\frac{1}{2}\right)\right),
$$

an empty sum meaning zero; further, z is a complex variable with positive real part and we take the principal branch as the determination of \sqrt{z}.

The formula (1) was used by Hardy-Ramanujan, and also by Rademacher subsequently, in their famous researches [2] and [4] on the function $p(n)$.

It is the main object of this paper to give a proof of (1) which is directly based on the following well known transformation formula in the theory of elliptic theta-functions:

$$
\begin{equation*}
\sum_{n=-\infty}^{\infty} e^{-(n+\alpha)^{2} \pi t}=\frac{1}{\sqrt{t}} \sum_{n=-\infty}^{\infty} e^{-\frac{n^{2} \pi}{i}} \cos (2 \pi n \alpha), \tag{2}
\end{equation*}
$$

