Journal of the Mathematical Society of Japan Vol. 4, No. 1, July, 1952.

On the Schur relations for the representations of a Frobenius algebra.

By Masaru OSIMA

(Received April, 2, 1952)

The Schur relations for the representations of a Frobenius algebra was studied in [1], [6]¹⁾. In the present note we shall prove the Schur relations by a new method. Some supplementary results are also obtained. In § 1 we shall study the properties of corresponding bases²⁾ of a Frobenius algebra. § 2 deals with the Cartan basis³⁾of an algebra. Using the results obtained in §§ 1 and 2, we shall derive in § 3 the Schur relations for the representations of a Frobenius algebra.

1. Corresponding bases of a Frobenius algebra. We consider an algebra A with unit element over a given field K. Let u_1 , u_2 , \cdots , u_n be a basis of A. Let us denote by S(a) and R(a) the left and the right regular representations of A defined by the basis (u_i) :

(1)
$$a(u_i) b = (u_i) S(a) R'(b)$$
 (a, b in A)

where R'(b) is the transpose of R(b). A is called a Frobenius algebra if S(a) is similar to R(a):

(2)
$$S(a) = P^{-1} R(a) P$$
.

We then have

(3)
$$(P')^{-1} R(a) P' = S(a^{\varphi})$$
 $(a^{\varphi} in A).$

The mapping $a \to a^{\varphi}$ forms an automorphism φ of A. This automorphism is completely determined by A, apart from an inner automorphism. We see that

(4)
$$(u_i^{\varphi}) = (u_i) (P')^{-1} P$$

where (u_i^{φ}) is obtained from (u_i) by application of the automorphism $\varphi: a \to a^{\varphi}$. If we set

¹⁾ The numbers in the brackets refer to the references at the end of the paper.

²⁾ Brauer [1].

³⁾ Nesbitt [4], Nesbitt and Scott [5].