A Proof of Schauder's Theorem

Shizuo Kakutani

1. Introduction. The purpose of this note is to give a simple proof to the following theorem of J. Schauder ${ }^{1)}$: A bounded linear operator T defined on a Banach space X is completely continuous if and only if the adjoint operator T^{*} of T defined on the conjugate space X^{*} of X is completely continuous. We shall give a formulation of Schauder's theorem (Theorem 2) in which X and X^{*} (and hence T and T^{*}) appear as a dual pair. (It is to be observed that X^{*} has no need to be the conjugate space of X in Theorem 2). Since T and T^{*} play equivelent roles in our formulation, the " if" part of the theorem is an equivalent proposition to the " only if" part.

Our proof of Schauder's theorem is based on the following well-known theorem of G. Arzelà: A uniformly bounded, equi-continuous family $F=\{f(x)\}$ of real-valued contincois functions $f(x)$ defined on a totally bounded metric space X is totally bounded with respect to the metric

$$
\begin{equation*}
d\left(f_{1}, f_{2}\right)=\sup _{x \in X}\left|f_{1}(x)-f_{2}(x)\right| \tag{1}
\end{equation*}
$$

We shall give a formalation of a special case of Arzela's theorem (Theorem 1) in which X and F play equivalent roles so that the total boundedness of X is also necessary for the total boundedness of F. The notion of totally bounded functions introduced in section 2 will be helpful in making arguments simpler.
2. Totally bounded functions. Let $X=\{x\}, Y=\{y\}$ be two sets. Let $f(x, y)$ be a bounded real-valued function defined for all $x \in X$ and for all $y \in Y$.

Lemma r. The following threc conditions are mutually cquivalent: (i) for any $\varepsilon>0$ there cxists a decomposition $X=U_{i=1}^{m} A_{i}$ of X inito a finite number of subsets $A_{i}, i=1, \cdots, m$, such that

$$
\begin{equation*}
\left|f\left(x_{1}, y\right)-f\left(x_{2}, y\right)\right|<\varepsilon \tag{2}
\end{equation*}
$$

for all $x_{1}, x_{2} \in A_{i}$ (same i), $i=1, \cdots, m$, and for all $y \in Y$. (ii) for any $\varepsilon>0$ there exists a decomposition $Y=U_{j=1}^{n} B_{j}$ of Y into a finite number of subsets $B_{j}, j=1, \cdots, n$, such that

$$
\begin{equation*}
\left|f\left(x, y_{1}\right)-f\left(x, y_{2}\right)\right|<\varepsilon \tag{3}
\end{equation*}
$$

for all $x \in X$ and for all $y_{1}, y_{2} \in B_{j}$ (same $\left.j\right), j=1, \cdots, n$. (iii) for any $\varepsilon>0$ there exist decompositions $X=U_{i=1}^{m} A^{b}, Y=U_{j=1}^{n} B_{j}$ of X and Y into a finite

