On a System of Differential Equations

Masao Sugawara

1. Establishment of Problem.

Notation: A great roman letter means a matrix of the type (m, n).
Problem: Let D be a domain with the boundary Γ in the space R of variable point $\left(x_{1}, x_{2}, \cdots\right)$. We want to find a real continuous functionmatrix U satisfying the following conditions;

$$
\begin{aligned}
& \Delta U+K U=0 \quad \text { in } D \\
& \frac{d U}{d n}+U H=0 \quad \text { on } \Gamma
\end{aligned}
$$

where $\Delta=\sum_{i} \frac{\partial^{2}}{\partial x_{i}{ }^{2}}$ and $\frac{d}{d n}$ normal derivation, each applying to every element of $U, K^{(m)}$ is a constant symmetric matrix and $H^{(n)}$ is a constant positive definite symmetric matrix.*)

Such a function-matrix is called a harmonic function-matrix in D.
By two matrices U, V holds Green's formula,

$$
\begin{align*}
& \int_{\Gamma} U \frac{d V^{\prime}}{d n} d w=\int_{D} U \Delta V^{\prime} d v+\int_{D} \sum_{i} \frac{\partial U}{\partial x_{i}} \frac{\partial V^{\prime}}{\partial x_{i}} d v \tag{1}\\
& \int_{\Gamma}\left(U \frac{d V^{\prime}}{d n}-\frac{d U}{d n} V^{\prime}\right) d w=\int_{D}\left(U \Delta V^{\prime}-\Delta U \cdot V^{\prime}\right) d v \tag{2}
\end{align*}
$$

where ' means transposition of a matrix.
When U is harmonic, from (1) follows

$$
\begin{aligned}
& \int_{\Gamma} U \frac{d U^{\prime}}{d n} d v=\int_{D} U \Delta U^{\prime} d v+\int_{D} \sum_{i} \frac{\partial U}{\partial x_{i}} \frac{\partial U^{\prime}}{\partial x_{i}} d v \\
& \left(\int_{D} U U^{\prime} d v\right) K=\int_{\Gamma} U H U^{\prime} d w+\int_{D} \sum_{i} \frac{\partial U}{\partial x_{i}} \frac{\partial U^{\prime}}{\partial x_{i}} d v .
\end{aligned}
$$

Now put for arbitrary two matrices U, V,
*) As the content of the present problem is of rather formal interest, we may make, suitable assumptions about domains, existence of derivatives and continuity as it needs.

