Integration of Fokker-Planck's Equation with a Boundary Condition

Kôsaku Yosida

1. Introduction. We consider Fokker-Planck's equation¹⁾

(1)
$$\frac{\partial f(t,x)}{\partial t} = Af(t,x), t \ge 0,$$

$$(Af)(x) = \frac{1}{\sqrt{g(x)}} \frac{\partial^2}{\partial x^i \partial x^j} (\sqrt{g(x)} b^{ij}(x)f(x))$$

$$+ \frac{1}{\sqrt{g(x)}} \frac{\partial}{\partial x^i} (-\sqrt{g(x)} a^i(x)f(x))$$

in a connected region R of an n-dimensional orientable Riemannian space with the metric $ds^2 = g_{ij}(x) dx^i dx^j$. As usual, the volume element in R is defined by $dx = \sqrt{g(x)} dx^1 dx^2 \cdots dx^n$, $g(x) = det(g_{ij}(x))$. We assume that the contravariant tensor $b^{ij}(x)$ be such that $b^{ij}(x)\xi_i\xi_j>0$ in R (for $\sum_i \xi_i^2>0$). The $a^i(x)$ obeys, by the coordinate change $x \to \bar{x}$, the transformation rule

(2)
$$\overline{a}^{i}(\overline{x}) = \frac{\partial \overline{x}^{i}}{\partial x^{k}} a^{k}(x) + \frac{\partial^{2} \overline{x}^{i}}{\partial x^{k} x^{s}} b^{ks}(x).$$

These properties of the coefficients $a^{i}(x)$ and $b^{ij}(x)$ are connected with the probabilistic meaning of the equation (1).

We assume that $g_{ij}(x)$, $a^i(x)$ and $b^{ij}(x)$ are infinitely differentiable functions of the coordinates $x = (x^1, x^2, \dots, x^n)$. The purpose of the present note is to consider a certain natural boundary condition on the boundary ∂R of R for the probability density f(t, x) at the time moment t > 0 and to discuss, for this boundary condition, the stochastic integrability (in the sense to be explained in § 3) of the equation (1). As in the previous papers, our treatment and the method of proof relies upon the theory of semi-group of linear operators, 2 which is, so to speak, an operator-theo-

¹⁾ A. Kolmogoroff: Zur Theorie der stetigen zufälligen Prozess, Math. Ann., 108 (1933), 149-160. K. Yosida: An extension of Fokker-Planck's equation, Proc. Japan Acad., 25 (1949), (9), 1-3.

²⁾ E. Hille: Functional Analysis and Semi-groups, New York (1948). K. Yosida: On the differentiability and the representation of one-parameter semi-group of linear operators, Journ. Math. Soc. Japan, 1 (1949), 1, 15-21, and K. Yosida: An operator-theoretical treatment of temporally homogeneous Markoff process, ibid., 1 (1949), 1, 244-235.