Journal of the Mathematical Society of Japan Vol. 2, Nos. 3-4, March, 1951.

## A Deformation Theorem on Conformal Mapping.

Masatsugu Tsujr.

(Received Jan. 24, 1950)
We will prove the following deformation theorem on conformal mapping.
Theorem 1. Let $D$ be a simply connected domain on the z-plane, which contains $z=0$ and is contained in $|z|<M$. Let $E$ be a continuum, which contains $z=0$ and is contained in $D$, such that a disc of radius $\rho$ about any point of $E$ is contained in $D$. If we map $D$ conformally on $|w|<1$ by $w=w(z)$, $z=z(w) \quad(w(o)=0))$, then the image of $E$ is contained in $|w|<1-k<1$, where $k=h\left(\frac{\rho}{M}\right)$ depends on $\frac{\rho}{M}$ only.
We can take

$$
k=\frac{\rho}{4 M} e^{-\alpha \frac{M^{2}}{\rho^{2}}\left(u=\frac{64 \pi}{\sqrt{3}} \log \frac{32}{9}<100\right) . . . . .}
$$

Proof. We cover the $z$-plane by a net of regular triangles $\Delta_{i}$ of sides $\frac{\rho}{4}$, whose vertices are $z_{m, n}=m \frac{\rho}{4} e^{\frac{\pi i}{3}}+n \frac{\rho}{4}(m, n=0, \pm 1, \pm 2, \cdots \cdots)$. It is easily seen that if $\Delta_{i}$ contains a point of $E$, then a disc of radius $\frac{3 \rho}{4}$ about a vertex $\zeta_{i}$ of $\Delta_{i}$ is contained in $D$, so that $\Delta_{i}$ is contained in $D$ and $w(z)$ is regular and schlicht in $\left|z-\zeta_{i}\right|<\frac{3 \rho}{4}$. Let $\Delta_{1}, \Delta_{2}, \cdots \cdots, \Delta_{N}$. be the triangles which contain points of $E$, where $z=0$ is a vertex of $\Delta_{1}$, then since the area of $\Delta_{i}$ is $\frac{\sqrt{3} \rho^{2}}{64}$ and is contained in $|z|<M$,

$$
\begin{equation*}
N<\mu=\frac{64 \pi M^{2}}{\sqrt{3} \rho^{2}} \tag{1}
\end{equation*}
$$

Let $z_{0}$ be any point of $E$ and let $z_{0}$ be contained in $\Delta_{n_{0}}\left(n_{0} \leqq N\right)$, then since $E$ is a continuum, there exists a chain of triangles :

$$
\Delta_{1}, \Delta_{2}, \cdots \cdots, \Delta_{n_{0}} \quad\left(n_{0} \leqq N\right)
$$

where $\Delta_{i}, \Delta_{i+1}$ have a common side, so that $\left|\zeta_{i}-\zeta_{i+1}\right|=\frac{\rho}{4}$ and each $\Delta_{i}$ con-

