Conformal Mapping of Polygonal Domains.*

\author{

- Yûsaku Komatu.
}
(Received June. 9, 1948)

§ 1. Introduction.

It is well known that a function, which maps a circular disc or a half-plane onto the interior of a polygon, is given by the formula of Schwarz-Christoffel. Let $z=f(z)$ be such a function and let the imagepolygon, laid on w-plane, have m vertices corresponding to the points a_{μ} ($\mu=1, \ldots, m$) on z-plane. Denoting by $\alpha_{\mu} \pi\left(0<\omega_{\mu}<2\right)$ the interior angle at vertex $f\left(a_{\mu}\right)$, the Schwarz-Christoffel formula may be written as follows:

$$
f(z)=C \int_{\mu=1}^{z} \prod_{\mu}^{m}\left(\alpha_{\mu}-z\right)^{\alpha_{\mu}-1} d z+C^{\prime}
$$

where C and C^{\prime} are both constants depending on position and magnitude of image-polygon.

The present author has previously shown that this formula can be generalized to the case of analogous mapping of doubly-connected domains. ${ }^{1)}$ We may take, as a standard doubly-connected basic domain, an annular domain $q<|z|<1,-\lg q$ being a uniquely determined conformal invariant, i. e. the so-called modulus (Modul) of given polygonal domain. Let the boundary components corresponding to circumferences $|z|=1$ and $|z|=q$ be polygons with m and n vertices respectively. Let further $\alpha_{\mu} \pi$ and $\beta_{\nu} \pi$ denote the interior angles (with respect to each boundary polygon itself) at vertices $f\left(e^{i \varphi_{\mu}}\right)$ and $f\left(q e^{i \psi \nu}\right)$ respectively. The mapping function $z=f(z)$ is then given by the formula

[^0]
[^0]: *) A preliminary report under the same title has been published in Kōdai Math. Sem. Rep. Nos. 3-4 (1949), 47250.

 1) Y. Komatu, Darstellungen der in einem Kreisringe analytischen Funktionen nebst den Anwendungen auf konforme Abbildung über Polygonalringgebiete. Jap. Journ. Math. 19 (1945), 203-215.
