Vol. 2, Nos. 1-2, Sept., 1950.

Journal of the Mathematical Society of Japan

On topological completeness

Jun-iti NAGATA

(Received May 30, 1949)

E. Čech has proved the following theorem¹⁾: \cdot

A metrizable space R is topologically complete if and only if it is completely metrizable.

In this paper we shall show that by making use of the theorem of N. A. Shanin,²⁾ we can simplify the proof of Čech's theorem and generalize it slightly.

We mean in this paper by a filter a family of closed sets having the finite intersection property, and we say that a filter $\{F_{\alpha} \mid A\}$ is vanishing when $\prod F_{\alpha} = \phi$ holds.

N. A. Shanin's theorem. In order that a T_1 -space R can be represented as an intersection of at most \mathfrak{n} (a cardinal number) open sets in Wallman's bicompactification W(R) of R, it is necessary and sufficient that there exists a collection $\{\mathfrak{F}_r\}$ of at most \mathfrak{n} vanishing filters \mathfrak{F}_r of R with the property: For an arbitrary maximum vanishing filter \mathfrak{F} of R, there exists a filter \mathfrak{F}_r of $\{\mathfrak{F}_r\}$ such that $\mathfrak{F}_r \subset \mathfrak{F}$.

When we note that there exists a one-to-one correspondence between an open set of W(R) containing R and a vanishing filter of R as well as between a point of W(R)-R and a maximum vanishing filter of R, this theorem is almost obvious.

Proof of Cech's theorem. We begin with the necessity of the condition. Let R be a topologically complete and metrizable space. Since R is topologically complete, R is, as is well known, a G_{δ} -set in Čech's bicompactification $\beta(R)$ of R, *i.e.* an intersection of at most countable open sets of $\beta(R)$. Since R is metrizable, and accordingly normal, $\beta(R)$ and w(R)are, as is well-known, identical. Therefore, when we use Shanin's theorem in the case of n=a, we get the family $\{\mathfrak{F}_n\}$ of at most a countable number of vaning filters \mathfrak{F}_n mentioned in the theorem.

Let $\mathfrak{F}_n = \{F_{n,\sigma} \mid u \in A_n\}$; then $\{F_{n,\sigma}^{\circ} \mid u \in A_n\} = \mathfrak{M}_n^{3}$ (n=1,2,...) are open coverings of R.

On the other hand, since R is metrizable, R has a base $\{\mathfrak{N}_m\}$ of uniform-