Journal of the Mathematical Society of Japan

On the structure and representations of Clifford algebras.

Yukiyosi Kawada and Nagayosi Iwahori.

(Received Jan. 15, 1950)

The structure and representations of Clifford algebras over the complex number field were studied by many authors.¹⁾ The purpose of this note is to investigate them over any ground field K with $\chi(K) \ge 2$. Moreover, to apply the results to the problems of Eddington on sets of anticommuting matrices,²⁾ we shall consider slightly generalized Clifford algebras. In Appendix we shall give irreducible representations of such algebras in their explicite form.

1. Let K be any field with the characteristic $\chi(K) \neq 2$, and n, g two integers such that $0 \leq g \leq n$, n > 0. The Clifford algebra of type (n, g) C(n,g)/K over K is defined as an algebra with generators.

 $\mathcal{U}_0, \mathcal{U}_1, \ldots, \mathcal{U}_n$

and with fundamental relations

(1) $u_0^2 = u_0, \ u_0 u_i = u_i u_0 = u_i, \ u_i^2 = u_0 \ (1 \le i \le g), \ u_i^2 = -u_0 \ (g+1 \le i \le n), \ u_i u_j + u_j u_i = 0 \ (i \ne j, \ i > 0, \ j > 0).$

C(n,g) has rank 2^n and

$$u_0, u_i \ (1 \leq i \leq n), \ u_i u_j \ (1 \leq i < j \leq n), \ \dots, u_1 u_2 \dots n_n$$

form a basis of $C(n,g)/K^{3}$ C(n,0)/K is the ordinary Clifford algebra.³⁾

We distinguish now three cases according to the properties of K: Case I. There is an element $\lambda \in K$ with $1+\lambda^2=0$.

Case II. There is no solution $\lambda \in K$ of $1+\lambda^2=0$, but there are elements

$$\alpha, \beta \in K$$
 with $1 + \alpha^2 + \beta^2 = 0$.

Case III. There are no solutions $a, \beta \in K$ of $1 + a^2 + \beta^2 = 0$.

All three cases may arise, when $\chi(K)=0$. Of course we have Case I when K is the complex number field, and Case III when K is the real number field. If $\chi(K) = p \neq 0$, then we have either Case I or Case II.⁴⁰ Case I occurs when $p \equiv 1 \pmod{4}$, and Case II when $p \equiv 3 \pmod{4}$ for prime field K.⁵⁰

Now we consider three algebras. The one is the quarternion algebra Q/K = C(2,0)/K: