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On the structure and representations of Clifford algebras.
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The structure and representations of Clifford algebras over the complex
number field were studied by many authors.1) The purpose of this note is
to investigate them over any ground field $K$ with $\chi(K)\neq 2$ . Moreover, to
apply the results to the problems of Eddington on sets of anticommuting
$matri_{CeS^{\underline{o}}},)$ we shall consider slightly $ge$neralized Clifford algebras. In
Appendix we shall give irreducible representations of such algebras in their
explicite form.

1. Let $K$ be any field $wIth$ th $e$ characteristic $\chi(K)\neq 2$ , and $n,$ $g$ two
integers such that $0\leqq g\leqq n,$ $n>0$ . The Cliford algebra of lype $(n, g)$

$C(n\zeta^{\backslash })/K$ over $K$ is defined as an algebra with generators.
$u_{0},$ $u_{1},$ $\ldots,$

$u_{n}$

and with fundamental relations
(1) $u_{0}^{\underline{o}}=n_{0},$ $u_{0}u_{i}=u_{i}u_{0}=u_{i},$ $u_{i}^{\underline{o}}=n_{0}(1\leqq i\leqq g),$ $u_{i}^{2}=-n_{0}(g+1\leqq i\leqq n)$ ,

$u_{i}u_{j}+u_{j}n_{i}=0(i^{-}\neq j, i>0, j>0)$ .
$C(ng)$ has rank $2^{n}$ and

$?l_{0},$ $l_{i}(1\leqq i\leqq n),$ $u_{i}u_{j}(1\leqq i<j\leqq n),$ $\ldots\ldots,$ $u_{1}u_{2}\ldots n_{n}$

form a basis of $C(n_{s^{0}})/K^{3)}$ $C(n,0)/K$ is the ordinary Clifford algebra.3)
We distinguish now three cases according to the properties of $K$ :

Case I. There is an element $\lambda\in K$ with $1+\lambda^{2}=0$ .
Case II. There is no solution $\lambda\in K$ of $1+\lambda^{2}=0$ , but there are elements

$a,$ $\beta\in$ A with $1+a^{2}+\beta^{2}=0$ .
Case III. There are no solutions $a,$ $\beta\in K$ of $1+a^{2}+\beta^{2}=0$ .

All three cases may arise,
$-$

when $\chi(K)=0$ . Of course we have Case
I when $K$ is the complex number field, and Case III when $K$ is the real
number field. If $\chi(K)=p\neq 0$ , then we have either Case I or Case II.4)

Case I occurs when $p\equiv 1(mod. 4)$ , and Case II when $p\equiv 3(mod. 4)$ for
prime field $K^{6)}$

Now we consider three algebras. The one is the quarternion algebra
$Q/K=C(2,0)/K$ :


